PROCESSOR

operating manual

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or additions.

First Printing: August, 1966

CONTENTS

Page
DESCRIPTION General 1
Functional 1
Processor States 1
Organization of Data 2
Data Format 2
Numbering Systems 2
Instructions 4
Addressing Main Memory 4
Input/Output Control 7
Sub-Units 8
Basic Processing Unit 8
Main Memory 8
Non-Addressable Memory 8
Fast Memory 8
Read-Only Memory 13
Program Control and Arithmetic Unit 13
Operator's Console 14
Maintenance Console Panel 15
Power Supply 16
Controls and Indicators 16
Power Supply Panels 16
Operator's Console Display Panel 19
Operator's Keyboard 22
Maintenance Console Panels 23
Features 33
Interrupt 33
Accuracy Control 34
Optional Features 36
Memory Protect 36
Elapsed Time Clock 36
Direct Control 36
Selector Channels 36
Emulator Options 36
OPERATION
Preparation for Operation 37
Operator's Console 37
Power Supply Rack 37
Normal Operation 37
Applying Power 37
Removing Power 37
Initial Program Loading 38
Error Recovery 42
OPERATION
(Cont'd)ILLUSTRATIONS
CONTENTS (Cont'd)
Page
Special Operations 49
Manual Initiation of I/O 49
ROM Check 50
Writing to Consecutive Main Memory Locations 51
Reading from Consecutive Main Memory Locations 51
Writing to Consecutive Fast Memory Locations 51
Reading from Consecutive Fast Memory Locations 52
Equipment Care 53
General 53
Inspection 53
Filters 54
Loading Paper 54
Ribbon Replacement 56
Lamp Replacement 58
Fuse Replacement 58
Cleaning the Type Pallets 60
Cleaning the Platen 60
Frontispiece - Model 70/45 Processor and Model 70/97 Operator's Console vi
Figure 1. Data Formats 3
Figure 2. 70/45 Instruction Formats 5
Figure 3. 70/45 Input/Output Flow 7
Figure 4. Interior Model 70/45 Processor (Rear View Showing Frame Opened) 9
Figure 5. Interior Model 70/45 Processor (Rear View Showing Frame Closed) 10
Figure 6. Operator's Console (Model 70/97) 14
Figure 7. Model 70/45 Maintenance Console Panel (Showing Main- tenance and Auxiliary Panels) 15
Figure 8. AC Input and Distribution Panel 16
Figure 9. Power Supply and Control Electronics Rack (Rear View) 17
Figure 10. Power Supply Control Panel 18
Figure 11. Model 70/97 Operator's Console Display Panel 19
Figure 12. Model 70/97 Operator's Console Keyboard Layout 22
Figure 13. Model 70/45 Maintenance Panel 23
Figure 14. Model 70/45 Auxiliary Maintenance Panel 31
Figure 15. Removing Filters 53
Figure 16. Loading Paper 55
Figure 17. Ribbon Replacement 55
Figure 18. Interior View of 70/45 Processor Maintenance Panel 56
Figure 19. Removal of Operator's Display Panel Cover 57
Figure 20. Light Bulb Replacement 57
Figure 21. 70/97 Operator Console (Top Cover Ass'y Raised) 58
Figure 22. Fuse Locations (Rear View of the Electrical Unit) 59
Figure 23. Removal of the Type Box 60
CONTENTS (Cont'd)
Page
LIST OFTable 1. Spectra 70/45 Model Numbers1
TABLES
Table 2. Basic Hexadecimal Marking System 2
Table 3. Operator's Console Panel (Indicators and Controls) 20
Table 4. Model 70/45 Maintenance Panel (Indicators and Controls) 24
Table 5. Model 70/45 Auxiliary Maintenance Panel (Indicators and Controls) 31
Table 6. Register Addressing in the Processor States 33
Table 7. 70/45 Interrupt Conditions 35
Table 8. Summary of Special Operations 43
Table 9. Conversion Table (FM Address Switches, Hexadecimal Address) 44
Table 10. Table of Instructions 45/46
Table 11. Fast Memory Layout and Register Assignment 47/48
GLOSSARY
APPENDICES
A - Extended Binary-Coded-Decimal Interchange Code (EBCDIC) 65
B - American Standard Code for Information Interchange (ASCII) (Extended to 8 Bits) 66
C — Character Codes 67
D - Powers of Two Table 72
E- Input/Output Operation Information 73
F - Typewriter Graphics and Codes 74

70/45 MAINTENANCE CONSOLE PANEL

Frontispiece - Model 70/45 Processor and Model 70/97 Operator's Console

- The RCA Model 70/45 Processor is a solid state, general purpose, digital processor. It is the main element of a system handling medium-large data processing applications. Because of its storage capacity, and data transmission and computation rates, this processor is applicable to both data processing and scientific-problem solving. The internal logic is controlled by Elementary Operation (EO's) stored in a read-only control memory.

The 70/45 Processor may be any one of the model numbers listed in Table 1. The memory size (capacity in bytes) and number of racks required to accommodate these sizes are also given in this table. The method of operation is the same for the different models and is described in the Operation portion of this manual.

The 70/45 is a variable-format processor, consisting of a Main Memory, Read-Only Memory, Non-addressable Memory, Fast Memory, Program Control, and Input/Output Control.

Table 1. Spectra 70/45 Model Numbers

Model Number	Capacity lin bytes)	Rack Number Identification	Remarks
$70 / 45 \mathrm{C}$	16,384	20 and 21	Rack numbers and their design functions:
$70 / 45 \mathrm{D}$	32,768	20 and 21	$20=$ Power Supply 21
$70 / 45 \mathrm{E}$	65,536	20 and 21	22 22
$70 / 45 \mathrm{~F}$	131,072	20,21, and 22	Memory Addition
23	$=$ Memory Addition		

FUNCTIONAL

Processor States
The RCA 70/45 Processor has four processor states that provide control of system and program interrupts. Programs may be executed in any one of these states, because each state is completely independent and has its own set of registers (except floating point register). The four processor states and their functions are as follows:

1. Processor State P_{1} - normally interprets and executes the user's program. The processing state is the problem-oriented state.
2. Processor State P_{2} - performs specific program tasks as dictated by the Interrupt Control State P_{3}.
3. Processor State P_{s} - is automatically entered when an interrupt is recognized other than one caused by a machine check or power failure.
4. Processor State P_{4} - is entered whenever a machine check or power failure occurs.

Upon detection of interrupt the hardware initiates Processor State 3 or 4. It is the programs responsibility to determine what action is to be taken in any processor state.

Organization of Data

Data Formats

The following definitions describe the various levels of data organization for the 70/45 Processor:

Bit - A bit is a single binary digit having the value of either zero or one.

Byte - A byte consists of eight information bits.
Halfword - A halfword consists of two consecutive bytes beginning on a main memory location that is a multiple of two.

Word - A word consists of four consecutive bytes beginning on a main memory location that is a multiple of four.

Doubleword - A doubleword consists of eight consecutive bytes beginning on a main memory location that is a multiple of eight.

The basic unit of information in the 70/45 Processor is a byte, which is the smallest addressable unit.

The internal code representation in the 70/45 is either the Extended Binary-Coded-Decimal Interchange Code (EBCDIC) or the American Standard Code for Information Interchange (ASCII) as specified by program. (See Appendices A, B, C, and D.)

There are eight distinct formats for data in main memory as shown in Figure 1.

The hexadecimal numbering system is used to represent characters and addresses in the 70/45 Processor. The hexadecimal system has a base of 16. The first ten marks are represented by decimal numbers zero (0) through nine (9); marks eleven through fifteen are represented by the letters A through F. Table 2 illustrates the decimal, binary, and hexadecimal representations of numbers zero through fifteen.

Table 2. Basic Hexadecimal Marking System

Hexadecimal (Base 16)	Binary (Base 2)	Deeime! (Base 10)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
B	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

NOTE: Numbers in upper right corners of blocks
indicate number of bits used.

Figure 1. Data Formats

Instructions

Addressing Main Memory

- There are five basic instruction formats which express, in general terms, the operations to be performed. These instructions are:

1. $\mathrm{RR}=$ register__register operation.
2. $R X=$ register__indexed storage operation.
3. $\mathrm{RS}=$ register——storage operation.
4. $\mathrm{SI}=$ storage_immediate operand operation.
5. $\mathrm{SS}=$ storage - storage operation.

The detailed format of each instruction is shown in Figure 2, and the instruction sub-fields are defined as follows:
$R_{1}, R_{2}, R_{3}=4$ bit operand register specification
$\mathrm{X}_{2} \quad=4$ bit index register specification
$\mathrm{B}_{1}, \mathrm{~B}_{2}=4$ bit base register specification
$\mathrm{D}_{1}, \mathrm{D}_{2}=12$ bit displacement
$\mathrm{I}_{2} \quad=8$ bit immediate operand
$\mathrm{L}_{1}, \mathrm{~L}_{2}=4$ bit operand length specification
$\mathrm{L}=8$ bit operand length specification

The effective storage address is computed from the following binary components :

1. Base (contents of the designated base register, B_{1} or B_{2})
2. Displacement $\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)$
3. Index (contents of the designated index register, X_{2}) for $R X$ instructions.

In computing the address, the base and index are treated as unsigned 18-bit positive binary integers in bits $14-31$ of the designated register. The displacement is treated as a 12-bit positive binary integer. The effective address is computed by adding the components as binary numbers, ignoring overflow.
\bar{N} ote: If register 0 is specified as the base register and/or the index register, then a zero quantity is to be added, regardless of the contents of register 0 .

The following examples use decimal addresses for convenience:

$$
E X A M P L E 1
$$

```
Assume Reg. 12 2000
```

 Reg. 130480
 | Instruction |
| :---: | $\mathbf{B}_{1} \quad \mathbf{D}_{1} \quad \mathbf{B}_{\mathbf{2}} \quad \mathbf{D}_{\mathbf{2}}$.

The effective address of B_{1}, D_{1} is

[^0]Addressing Main Memory (Cont'd)

EXAMPLE 2

$\begin{array}{rl}\text { Assume Reg. } 3 & 30010 \\ \text { Reg. 2 } & 00200\end{array}$
Instruction

The effective address of X_{2}, B_{2} and D_{2} is

$$
30010+00200+1000=31210
$$

Figure 2. 70/45 Instruction Formats

Addressing Main Memory (Cont'd)

EXAMPLE 3

To process Record 2, the contents of Register 2 are increased by 12, the size of Record 1. The instruction field in (example 3) would then refer to Field 2 of Record 2.

If the instruction is an index-type instruction, a second general-purpose register, called an index register, is also used to generate the address. In example 3, the index register (Register 3) would initially be cleared to zero. After the first record is processed, the contents of Register 3 are increased by the record size. Then the instructions using Registers 2 and 3 for addressing would refer to Record 2. An illustration of this follows:

Register 2 (base) 5000

Register 3 (index)

Instruction	$\mathbf{X}_{\mathbf{2}}$		$\mathbf{B}_{\mathbf{2}}$

Effective Address for Field 2,

Record 2: $5000+12+4=5016$

Input/Output Channels

- The Model 70/45 Processor has two types of input/output channels, selector channels and a multiplexor channel.

Selector Channels - Up to three selector channels (optional) can be attached to a Model 70/45 Processor. Each selector channel can address up to 256 peripheral devices.

Each selector channel has two standard interface trunks and each standard interface trunk can be connected to the control electronics of an input/output device. A device control electronics controls one device (i.e., Card Reader, Printer), or a number of devices (i.e., Tape Controller: up to 16 Tape Stations).

Only one device can operate on a selector channel at one time. However, all selector channels can operate simultaneously with, and independently of, normal processor operation.

Multiplexor Channel - The multiplexor channel is standard on the Model 70/45 Processors, and can address up to 256 devices.

The multiplexor channel has eight standard interface trunks, each of which can be connected to a device control electronics. This permits the multiplexor channel to operate devices on all eight trunks simultaneously. The limit as to the number of input/output devices that can be connected is determined by the device control electronics. A ninth trunk is provided on the multiplexor channel for exclusive use by the Model 70/97 Console.

Figure 3 depicts the logical connection of the I/O channels and I/O devices.

Figure 3. 70/45 Input/Output Flow

SUB-UNITS
 Basic Processing Unit

Main Memory

Non-Addressable Memory

Fast Memory

- The Basic Processing Unit (BPU) (See Figures 4 and 5), in response to an internally stored program, can effect internal data transmission, perform arithmetic operations, execute decisions and control instructions, and perform branching operations. In addition, the BPU can operate peripheral devices in either an input or an output mode.
- The Main Memory consists of expandable magnetic core storage and is available in the expandable sizes as indicated in Table 1. Memory-cycle time is 1.44 microseconds. This is the time to transfer two bytes from the main memory to the memory register and to regenerate the bytes in storage. The processor normally operates on two 8-bit bytes at a time, although the minimum addressable data unit is one byte.

This memory is a portion of the main memory that cannot be addressed by program. A set of registers that services the devices attached to a multiplexor channel is contained in the non-addressable main memory. The size of this memory will vary in accordance with the capacity of the main memory selected. Non-addressable memory is in addition to the main memory capacity of the system.

The fast memory is a micromagnetic storage device consisting of 128 four-byte words, the cycle time of which is 300 nanoseconds. Each word in a fast memory is uniquely addressed.

The following registers are contained in the fast memory of a 70/45 Processor.

1. Processor Utility Registers - All locations designated as processor utility registers are used by the processor for program control and cannot be used by the program.
2. General Registers - These locations are the general registers for each processor state. These registers are used by the program for base addressing, for indexing, or for storing operands.
3. Interrupt Mask Registers - An Interrupt Mask register for each processor state permits or inhibits 32 interrupt conditions.

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{P}_{\mathbf{4}}$	
Interrupt Mask	40	44	50	14	See Interrupt Flags

Figure 4. Interior Model 70/45 Processor (Rear View Showing Frame Opened)

Figure 5. Interior Model 70/45 Processor (Rear View Showing Frame Closed)

Fast Memory

 (Cont'd)4. Interrupt Status Registers - An Interrupt Status register for each processor state stores interrupt identification information and operational control information. This register contains indications of the last state interrupted, the protection key, the decimal mode (ASCII or EBCDIC), the privileged mode bit and the supervisor call identification.

5. Program Counter - A Program Counter for each processor state contains the main memory address of the next instruction to be executed, the condition code and the instruction length code of the last instruction in which an interrupt occurred, and the program mask.

6. Input/Output Channel Registers - A set of four registers for each selector channel controls input/output operation. A set of four registers for the multiplexor channel controls initiation and termination of input/ output operations on the multiplexor channel.

Fast Memory (Cont'd)
7. Floating-Point Registers - Four floating-point registers (eaç is two words long) are used in floating-point arithmetic.

Fast Memory (Cont'd)

Read-Only Memory

Program Control and Arithmetic Unit

8. Interrupt Flag Register - One interrupt Flag register is provided. When an interrupt condition occurs, a bit associated with this condition is set in the Interrupt Flag register.

Read-Only Memory (ROM) is an integral part of the 70/45 Processor. The standard 70/45 ROM consists of two banks of 1,02454 -bit words each. Each word contains one microinstruction of 53-bit length. In addition, the $70 / 45$ ROM contains a 12 -bit address register.

The wired-in microprogram logic contained in the read-only memory banks control the elementary operations of the $70 / 45$. The cycle time of one ROM bank is 960 nanoseconds. The effective cycle time of both ROM banks operating alternately is 480 nanoseconds with a 54 -bit access.

The 70/45 Processor is obtainable with two additional ROM banks containing the microinstructions for any combination of the available Emulator features. (Refer to Optional Features.)

- The program control and arithmetic unit in the Model 70/45 Processors interprets and executes the instructions stored in main memory. Registers and indicators monitor the sequence of operations, perform automatic accuracy checks, and communicate with the RCA standard interface in the control of input/output devices.

Operator's Console

The Model 70/97 Operator's Console is a free standing, self-contained unit which consists of two portions: the Console Typewriter and the Operator's Console/Display Panel, mounted together on a Console table. (See Figure 6.) The console panel provides the controls and indicators to enable system operation in conjunction with operating system programs. The operator has complete control of the system and communicates with the system via a set of control switches and the console typewriter.

Figure 6. Operator's Console (Model 70/97)

Maintenance Console Panel

- The Maintenance Console for the 70/45 Processor consists of two panels: the Maintenance Panel and the Auxiliary Maintenance Panel. These two panels are physically mounted on the power supply rack and incorporate controls and indicators to enable system operation without the assistance of operating system programs for maintenance purposes. Refer to Tables 4 and 5 for description and functions of the indicators and controls of these panels. (See Figure 7.)

Figure 7. Model 70/45 Maintenance Console Panel (Showing Maintenance and Auxiliary Panels)

Power Supply

CONTROLS AND

 INDICATORS
Power Supply Panels

AC INPUT AND distribution panel

- The 70/45 Processor Power Supply furnishes power to the Basic Processing Unit and to the High-Speed Memory in addition to the Operator's Console. Contained within the Power Supply rack are the Typing Control and Power Supply electronics. Refer below for description and functions of the Controls and Indicators provided on the Power Supply Control Panel and the AC Input and Distribution Panel.
- The following describes the operational functions of the circuit breakers, pushbutton and indicators that comprise operator's controls for the 70/45 Processor.
- This panel is located within the Power Supply cabinet and is shown in Figures 8 and 9. The circuit breaker switches provide AC power protections as indicated on the front panel.

MAIN - This on-off switch is the main circuit breaker for ac power. When this switch is ON, ac line voltage is available to the Processor Power Supply.

CONVENIENCE OUTLET - This switch provides ac line voltage to the convenience outlets located in the power supply racks.

FANS - This switch provides ac line voltage to the fans located within the various processor racks.

CONTROLS - This switch provides ac line voltage protections to the thermostat warning signal controls located in the Power Supply and Basic Processor Unit racks.
$-5 ;+30 /+20 /+10 ;+50 /+5 /-30-$ These circuit breakers protect the individual power supply voltages as supplied throughout the processor.

Figure 8. AC Input and Distribution Panel

Figure 9. Power Supply and Control Electronics Rack (Rear View)

POWER SUPPLY CONTROL PANEL

- This panel is located within the Power Supply rack as shown in Figures 9 and 10. Essentially this panel is utilized for maintenance purposes. However, the functions of the controls and indicators pertaining to this panel are described herein, as an aid to the operating personnel.

TEST - This switch is used to turn on the DC power in the test mode. The DC power is isolated from the logic rack(s). Pressing the pushbutton will light its associated indicator.

RESET - Pressing this pushbutton will reset all of the power supply sensing functions. The indicator is lit after a fault is detected and will go off after the POWER SUPPLY is reset.

CURRENT OVERLOAD - These indicators will light whenever a specific current overload (as noted on the panel) is detected in the power supply input.

VOLTAGE OUT OF TOL - When the OPERATE and/or TURN ON indicators are displayed, the indication is that the protection circuits have detected a voltage error.

VOLTMETER - This nine position rotary switch and its associated test jacks, are used for monitoring the output voltage as determined by the positioning of the switch.

TEMP. WARNING IN FRAME - When indicator is lit, a temperature sensor is approaching the maximum safe limits. The location of the sensor is as identified by the markings on the panel.

TEMP. OVERHEAT IN FRAME AND TEMP. OVERHEAT IN COOLER - The indicator associated with the sensor when lit, indicates an overheating condition. The location of the sensor is as identified by the markings on the panel.

LAMP TEST - Pressing this button will cause all Control Panel lamps to light, thus enabling the identification of any defective bulb.

Figure 10. Power Supply Control Panel

Operator's Console Display Panel

- By means of the three Digi-Switches and pushbuttons, an operator can perform an initial program load function from any input device; start and stop the computer; or interrupt the program in order to initiate communication with the software via the typewriter. The following listing describes the type and use of the various switches and indicators that comprise the Operator's Display Panel. (See Figure 11 and Table 3.)

Figure 11. Model 70/97 Operator's Console Display Panel

Panel Designation	Type	Description and Function
Load Unit Switches (No markings on panel)	Digi-Switches	The three digi-switches provide for the entry of the I/O channel and device number for initial program load function and are used in conjunction with the LOAD switch. All three switches have sixteen positions labeled 0 through 9 and A through F. Each switch is used as follows: a. Switch 1 This (leftmost) switch provides the three bit channel address of which only positions 0 through 7 are used. b. Switch 2 This (center) switch provides the 4 high order bits of the device number. c. Switch 3 This (rightmost) switch provides the 4 low order bits of the device number.
MASTER	Pushbutton Switch/ Indicator (Green)	This alternate action switch is used to enable the power supply control circuits and must be in the ON condition before the POWER ON switch at the Maintenance Panel can be activated. This switch can also be used as an emergency power off switch, in which case DC power is disconnected, by-passing the normal DC power off sequencing, and causing the power failure interrupt to be set in the processor. The indicator is turned on upon the pressing of this switch, and remains on, until the switch is pressed again to turn off power. Whenever this switch is in its OFF condition, the POWER ON on the Maintenance Panel is ineffective. This switch does not control power to the console typewriter (See Note 1).
POWER READY	Indicator (Green)	This indicator is turned on to indicate that the processor DC power is on and that the processor is ready for operation. This occurs when the processor power sequencing is completed and remains on until power is removed from the processor, either at the completion of power off sequencing, or emergency power off procedures.
IDLE	```Indicator ```	This indicator is turned on when the Idle instruction is operating. (See Note 2.)
OVER HEAT	Indicator (Red)	This indicator is turned on whenever the temperature in the processor exceeds its environmental design. (See Note 2.)
LOCAL	Indicator (Yellow)	This indicator is turned on whenever the Console typewriter LOCAL-OFF-LINE switch is positioned to LOCAL, or when DC power is off in the processor.
ERROR	Indicator (Red)	This indicator is turned on whenever the following errors have been detected in the processor: MPPE MMPE FMPE IOPE ROME PEINT (During load operation) The particular error which has been detected can be determined from the specific indicators on the Maintenance Panel.

Table 3. Operator's Console Panel (Indicators and Controls) (Cont'd)
(Reference Fig. 11)

Panel Designation	Type	Description and Function		
SEND	Indicator (Yellow/Red Border)	When lit, indicates that the Processor is ready to receive input from the Console typewriter. The indicator is turned on whenever a read typewriter operation is initiated. The indicator is turned off when either the EOT key or the Error key on the keyboard is activated.		
$\begin{aligned} & \text { P. S. } 2^{1} \\ & \text { P. S. } 2^{0} \end{aligned}$	Indicators (Yellow)	Displays the current program state when the processor is halted as follows:		
		P.S. 2^{1}	P.S. 2^{0}	Program State
		0	0	4
		0	1	3
		1	0	2
		1	1	1
		(See Note 3)		
COIN (Console Interrupt Switch)	Pushbutton Switch	When this momentary contact switch is set, the Console Interrupt Flag is set in the Processor, thus notifying the Operating System software of console operator intervention via the Console Typewriter.		
	Pushbutton Switch	Pressing this momentary contact switch will reset the system conditions to a state which permits orderly start-up. (See Note 3.)		
STOP	Pushbutton Switch/ Indicator (Yellow)	Pressing this momentary contact switch causes the processor to halt after completion of the current instruction being performed and any I/O operation currently in progress.		
$\begin{aligned} & \text { SET } \\ & \text { HEX } \end{aligned}$	Pushbutton Switch/ Indicator (Green)	This alternate action switch when activated will set the Console typewriter electronics to operate in Hexadecimal mode.		
LOAD	Pushbutton Switch/ Indicator (Yellow)	When this switch is pressed, program/data from the input device designated by the Load Unit switches are loaded to main memory. The associated indicator and the RUN indicator are lit when the Load Switch is pressed. Upon successful completion of loading the Load indicator is turned off.		
START	Pushbutton Switch/ Indicator (Green)	This momentary contact switch when pressed and then released will start the processor. The indicator is lit when the processor is running.		

Notes: 1. This switch is duplicated on the 70/45 Maintenance Panel.
2. This indicator is duplicated on the $70 / 45$ Maintenance Panel.
3. These indicators are duplicated on the Maintenance Panel.

OPERATOR'S KEYBOARD

- The following describes the functions of the keys on the Operator's Keyboard. Figure 12 illustrates the Keyboard layout.

RETURN - Pressing down on this keylever will cause the type box and printing carriages to return to the left-hand margin and the paper feed mechanism to advance. One or two lines will advance, depending on the position of the feed mechanism control.

REPT (Repeat) - When this keylever is pressed simultaneously with another keylever or the space bar and held down, it will cause that character or function to repeat as long as the Repeat keylever is held down.

SHIFT - When pressed simultaneously with a character keylever, this keylever will cause the "upper case" character of the character keylever to be printed.

SPACE Bar - Pressing this bar will cause the typewriter to perform a print function on a blank space of the type box. This will cause a blank space on the paper, the size of one character. If the computer is reading from the typewriter a space character is sent to HSM.
$E R R O R$ - This keylever is used to terminate a Read Command when a typographic error is detected. Pressing down on this keylever, the SEND lamp will go out and the Read Command will terminate with an indication of a data error.

EOT (End of Transmission) - This keylever is used to terminate a Read Command upon completion of the message. When this keylever is pressed, the SEND lamp will extinguish and the Read Command will be terminated.

LOC LF (Local Line Feed) - When this keylever is held pressed, paper will advance through the mechanism without the carriage return function. Paper is fed out smoothly, not incrementally as when pressing the RETURN keylever.

LOC CR (Local Carriage Return) - Pressing this keylever will cause the type box and printing carriages to return to the left-hand margin without feeding paper through the mechanism.

Non-slip Paper Feed - Continuous non-slip form feeding is accomplished by the sprocket pins located in the platen which engage corresponding holes in the form feed paper being utilized.

Figure 12. Model 70/97 Operator's Console Keyboard Layout

MAINTENANCE

 CONSOLE PANELSmaintenance panel

- Table 4 lists the various controls and indicators available on the Maintenance Panel. In addition, the type of control (Pushbutton/Switch and/or Indicator) and a brief description or function of the control and/or indicator are also given. The figure reference number contained in Table 4 is indicated on Figure 13. (Actually these reference numbers do not appear on the panel, they are supplied herein as an aid for orienting the switch and/or indicator.)

Figure 13. Model 70/45 Mainłenance Panel

Figure Reference No.	Panel Designation	Type	Description and Function
	F V C M S D T N A E I	Indicators (Yellow)	Refer to text for the functions of these READ ONLY MEMORY REGISTER Displays. (Page 30.)
A 1	MASTER	Pushbutton Switch/Indicator (Green)	This alternate action switch is used to enable the power supply control circuits and must be in the ON condition before the POWER ON switch can be activated. The switch can be used as an emergency off switch, in which case DC power is disconnected by passing the normal DC power off sequencing and causing the power failure interrupt to be set in the processor. The indicator is turned on upon the pressing of this switch and remains on until the switch is pressed again to turn off power. Whenever this switch is in its OFF condition, the POWER ON on the Operator's Display Panel is ineffective. Note: This switch is duplicated on the 70/97 Operator's Console Panel.
B 1	$\begin{aligned} & \text { POWER } \\ & \text { ON } \end{aligned}$	Pushbutton Switch/Indicator (Green)	When this POWER ON momentary contact switch is pressed it will permit the DC voltage of the processor to be turned on. The indicator is turned on only at the completion of the power-up sequence and remains on until power is turned off. IMPORTANT: This switch is ineffective until both MASTER switches are ON.
C 1	POWER OFF	Pushbutton Switch/Indicator (Green)	This POWER OFF momentary contact switch and indicator is used to cause normal power off sequencing of the DC voltages in the Processor. After pressing this switch the indicator will remain lit until the AC power line in the Processor is disconnected.
D 1	OHW	Indicator (Red)	This OVERHEAT WARNING indicator will light whenever the temperature in the Processor has exceeded its environmental design. Note: This indicator is duplicated on the Operator's Display Panel.
E 1	EOSP	Pushbutton Switch/Indicator (Yellow)	This READ ONLY MEMORY ADDRESS STOP alternate action switch provides the means for making Read Only Memory Address comparisons. When this switch is set the indicator is turned on and the Processor compares the address of each EO to be performed with the address set in Memory Address Stop switches on the Auxiliary Panel. When equality is met, the separate MASP equality indicator is turned on and the Processor is halted.

Table 4. Model 70/45 Maintenance Panel (Indicators and Controls) (Cont'd)
(Reference Fig. 13)

Figure Reference No.	Panel Designation	Type	Description and Function
F 1	MASP	Indicator (Yellow)	This MEMORY ADDRESS STOP indicator is turned on when the memory address and the address set in the Memory Address Stop Switches on the Auxiliary Panel are equal for the conditions imposed by the setting of the EOSP, MASP, EMASP and IOMASP operate switches.
G 1	EMASP	Pushbutton Switch/Indicator (Yellow)	This MEMORY ADDRESS STOP Execute alternate action switch provides the main memory address comparison during instruction executions. When this switch is set, the Processor will compare the address of each main memory location accessed during instruction execution (including I/O initiation and interrupt processing but excluding I/O servicing) with the address set in the Memory Address Stop Switches on the Auxiliary Maintenance Panel. (See Table 5.) The indicator is turned on when the switch is set. When equality is met, the separate MASP equality indicator is turned on and the Processor is halted. Note: This switch may be set in combination with other MASP operate switches.
A 2	$\text { SEL } 1$ INT	Indicators (Green)	```These six Interrupt Display indicators display the state (set or reset as indicated by the condition of the indicator, either on or off) of the processor interrupt flags. These are designated as follows: SEL \(1=\mathrm{I} / \mathrm{O}\) Selector Channel 1 Int SEL \(2=\mathrm{I} / \mathrm{O}\) Selector Channel 2 Int SEL \(3=\mathrm{I} / \mathrm{O}\) Selector Channel 3 Int MUX \(=\mathrm{I} / \mathrm{O}\) Multiplexor Channel Int PE \(\quad=\) Program Error (indicator on if any of the following Int interrupt flags are set): Privileged Operation OP - Code Trap Address Error Data Error Exponent Overflow Divide Error Significant Error Exponent Underflow Decimal Overflow Fixed Point Overflow MIS \(=\) Miscellaneous (indicator on if any of the following Int interrupt flags are set): External Signals 1 through 6 Elapsed Time Clock Console Interrupt Request Supervisor Call Instruction Débug Mode```
B 2	SEL 2 INT		
C 2	$\underset{\text { INT }}{\text { SEL } 3}$		
D 2	$\begin{aligned} & \text { MUX } \\ & \text { INT } \end{aligned}$		
E 2	$\begin{aligned} & \text { PE } \\ & \text { INT } \end{aligned}$		
F 2	$\begin{aligned} & \text { MIS } \\ & \text { INT } \end{aligned}$		

Table 4. Model 70/45 Maintenance Panel (Indicators and Controls) (Cont'd)
(Reference Fig. 13)

Figure Reference No.	Panel Designation	Type	Description and Function
G 2	MASP	Pushbutton Switch/Indicator (Yellow)	The purpose of this MEMORY ADDRESS STOP-STATICIZING alternate action switch is to provide the main memory address comparison when instructions are staticized. When switch is set the indicator is turned on and the processor compares the address of each instruction staticized with the address in the Memory Address Stop Switches on the Auxiliary Maintenance Panel. (See Table 5.) The comparison is made on the location of the operation code only. When equality is reached the separate MASP equality indicator is turned on and the processor is halted.
A 3	ALI	Pushbutton Switch/Indicator (Yellow with Red border)	When this ALARM INHIBIT alternate action switch is set, the Processor will not execute actions normally performed as a result of machine errors. The error indicator(s) will be lit but in all other respects the error will be ignored. Notes: 1. The indicator may also be turned on by the IDLE instruction with Field bit 2^{0} set. 2. This switch does not inhibit error actions at I/O control electronics. 3. This switch may be pressed while processor is running.
B 3	OPESP	Pushbutton Switch/Indicator (Yellow)	When this PROGRAM ERROR ORDERLY STOP alternate action switch is set, subsequently detected program errors will cause the Processor to be halted after completion of the current instruction. I/O servicing (e.g., data transfer) may continue to completion. Pressing this switch turns on the indicator. Note: A maximum of 10 seconds may elapse between detection of a program error and processor halt. Interrupts occurring during this time will not be taken, however, the hardware interrupt flag will be set.
C 3	ISIM	Pushbutton Switch/Indicator (Yellow)	This INHIBIT SIMULTANEITY alternate action switch is used to perform normal processing and Input/Output servicing in a serial mode. When an I/O instruction is initiated, no further processing will take place until the termination of the input/output occurs through an interrupt. The switch must be set prior to the initiation of the I/O. If an interrupt occurs during an I/O execution, with ISIM set, the interrupt is made and then serviced after the I/O has been completed.
D 3	AMI	Pushbutton Switch/Indicator (Yellow)	When this ADDRESS MODIFICATION INHIBIT alternate action switch is set, a normal address incrementing is inhibited to allow repeated addressing of the memory location currently being accessed. Pressing the switch turns on the indicator.
E 3	WRM	Pushbutton Switch/Indicator (Yellow)	When this WRITE MEMORY alternate action switch is set, data entered to the Utility Register by means of the Data/Display switches are written to a specified memory location when the START switch is pressed. Pressing this switch turns on the indicator.

Table 4. Model 70/45 Maintenance Panel (Indicators and Controls) (Cont'd)

(Reference Fig. 13)

Figure Reference No.	Panel Designation	Type	Description and Function
F 3	SFSP	Pushbutton Switch/Indicator (Yellow)	The SINGLE FUNCTION STOP alternate action switch provides the means for manually stepping through an instruction, one function at a time.
G 3	IOMASP	Pushbutton Switch/Indicator (Yellow)	The MEMORY ADDRESS STOP I/O SERVICING alternate action switch provides the main memory address comparison at the main memory locations addressed during I/O data service. When this switch is set the indicator is turned on. When equality is reached the separate MASP equality indicator is turned on and the Processor is halted.
A 4	ASM	Pushbutton Switch/Indicator (Yellow/Red Border)	This ADDRESS SHADED MEMORY alternate action switch allows the addressing of non-addressable memory for display or modification. Pressing this switch causes the indicator to be lit.
B 4	IPESP	Pushbutton Switch/Indicator (Yellow)	This PROGRAM ERROR IMMEDIATE STOP alternate action switch is used to halt the Processor upon detection of a program error. When switch is pressed the indicator is turned on.
C 4	MESP	Pushbutton Switch/Indicator (Yellow)	The MACHINE ERROR STOP alternate action switch is used to halt the Processor immediately upon detection of a machine error. Pressing this switch will turn on the indicator.
D 4	FR	Pushbutton Switch/Indicator (Yellow)	This FUNCTION REPEAT alternate action switch when pressed will cause the repetition of a single function to be performed by the Processor and will light the indicator.
E 4	RDM	Pushbutton Switch/Indicator (Yellow)	This READ MEMORY alternate action switch is used to read data from memory into the UR register which can be displayed on the Data/Display switches. Pressing this switch will turn on the indicator light.
F 4	ICSP	Pushbutton Switch/Indicator (Yellow)	This INSTRUCTION COMPLETE STOP alternate action switch when pressed will cause the processor to halt at the completion of the current instruction. Pressing this switch will turn on the indicator light. Pressing the START switch while ICSP is activated will cause the Processor to execute one instruction and stop. Note: This switch may be used to stop the Processor in the same manner as that of the STOP switch on the Operator's Display Panel.
G 4	HSMI	Pushbutton Switch/Indicator (Yellow)	The HIGH SPEED MEMORY INHIBIT alternate action switch is used to inhibit accessing of the main memory locations during operation. The indicator is turned on when the switch is set.
A 5	ROME	Indicator (Red)	This READ ONLY MEMORY ERROR indicator when lit indicates that an error has been detected in the Read Only Memory.

Table 4. Model 70/45 Maintenance Panel (Indicators and Controls) (Cont'd)
(Reference Fig. 13)

Table 4. Model 70/45 Maintenance Panel (Indicators and Controls) (Cont'd)
(Reference Fig. 13)

Figure Reference No.	Panel Designation	Type	Description and Function
A 8 A 9 A 10 A 11 A 12 A 13 A 14 A 15 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15	As Noted in Description and Functions	Indicators (Green)	These groups of indicators display the state of the following Processor flip-flops: When the flip-flop is set, the indicator is on.
$\begin{array}{ll} \text { C } 10 \\ \text { C } 12 \end{array}$	None	Indicators (Yellow)	Parity Indicators - When MMR is displayed, C10 displays the parity bit for the most significant byte and C12 displays parity bit for the least significant byte. When DR or a FM location is displayed C10 displays the parity bit for the two bytes selected. Odd parity is used. The other registers do not have a parity bit associated with them.
$\begin{array}{lll} \text { C } 11 \\ \text { C } 13 \end{array}$	CD ©	Pushbutton Switch/Indicators (Yellow)	These © $\widehat{\text { C }}$ and C1 RESET momentary contact switches are used for resetting the Data/Display indicators, i.e., one for each byte.
$\begin{array}{ll} \text { D } & 10 \\ \text { D } & 11 \\ \text { D } & 12 \\ \text { D } & 13 \\ \text { E } & 10 \\ \text { E } & 11 \\ \text { E } & 12 \\ \text { E } & 13 \\ \text { F } & 9 \\ \text { F } & 10 \\ \text { F } & 11 \\ \text { F } & 12 \\ \text { F } & 13 \\ \text { G } & 9 \\ \text { G } & 10 \\ \text { G } & 11 \\ \text { G } & 12 \\ \text { G } & 13 \end{array}$	NONE	Pushbutton Switch/Indicators (Yellow)	These DATA/DISPLAY momentary contact switches are used to display or modify the contents of hardware registers, fast memory or main memory as selected by the appropriate switches. Selection of register or memory location to be displayed is determined by the applicable switches on the auxiliary maintenance panel.

Table 4. Model 70/45 Maintenance Panel (Indicators and Controls) (Cont'd)
(Reference Fig. 13)

Figure Reference No.	Panel Designation	Type	Description and Function
C 15	MARG CK	Pushbutton Switch/Indicator (Yellow/Red border)	When MARGINAL CHECK indicator is lit it indicates that main memory is in the marginal check mode. When any position of the Memory Bank Selection switch on the Auxiliary Maintenance Panel is pressed, this indicator is turned on and remains on until the switch is reset. This switch is a lamp check switch.
E 15	GEN RES	Pushbutton Switch	This GENERAL RESET momentary contact switch when pressed will reset the system conditions to a state enabling an orderly start-up. Note: This switch is duplicated on the Operator's Display Panel.
F 15	IDLE	Indicator (Yellow/Red border)	This indicator is turned on when the Idle instruction is operating. Note: This indicator is duplicated on the Operator's Display Panel.
G 15	START	Pushbutton Switch/Indicator (Green)	Pressing and releasing this START momentary contact switch will start the Processor. The indicator is also lit at the same time, and will remain lit until the Processor is halted. The indicator is also turned on whenever a Load operation, from the Operator's Display Panel, has been initiated. Note: This indicator is duplicated on the Operator's Display Panel.

Read Only Memory Register Display

The 53 indicators on the Read Only Memory Display portion of the Maintenance Panel correspond to the 53 bits comprising a $70 / 45$ Elementary Operation (EO). When the processor is running, these indicators will display the EO's at processor speeds. When the processor is halted, they display the EO in the Read Only Memory location as selected by the Read Only Memory Address switches, or the last Elementary Operation executed if no selection has been made. The panel designations are as follows:

EO Fields	Panel Marking	Function
Function Control	F	Function of EO
	V	Variation of EO
	Data Movement Control	C
Branch Control	S	Counter
	D	Memory
	T	Source
Exception Check Control	N	Destination
Inhibit Control	A	Test
	E	Normal

AUXILIARY MAINTENANCE PANEL

Figure 14 illustrates the controls and indicators located on the Auxiliary Maintenance Panel. Table 5 lists the use and description of these controls.

Figure 14. Model 70/45 Auxiliary Maintenance Panel

Table 5. Model 70/45 Auxiliary Maintenance Panel (Indicators and Controls)
(Reference Fig. 14)

Name and/or Panel Designation	Type		Description and Function

Table 5. Model 70/45 Auxiliary Maintenance Panel (Indicators and Controls) (Cont'd)
(Reference Fig. 14)

$\begin{gathered} \text { Name } \\ \text { and/or } \\ \text { Panel Designation } \end{gathered}$	Typs	Description and Function			
REGISTER SELECT (Cont'd)		7 B/K 8 MM 9 MA 10 FM 11 (N	A B Re Prote ASCI Emul Non- DD Main Regis Main addre R Fast Resel other must be st	(4 bits) Key (4 ode (1 bit) Control ileged Mo mory Ad - next a mory Add 18 bits) mory Add ressing viously pressed d.	ts) bit) Portion of Data (18 bits) Register - current Register (7 bits) witch, resets any ition. This switch the processor can
FAST MEMORY ADDRESS	Gang Switches (9 positions) and Digi-Switch	These switches are used to select a Fast Memory location to be displayed or modified by the Data/Display switches. The leftmost eight positions of the gang switch are used to select the least significant three bits of the address of the Fast Memory location, and initiates a read cycle.			
		Switch Position	3 Least Significant Bits	Switch Position	3 Least Significant Bits
		7 (leftmost) 6 5 4	111 110 101 100	3 2 1 0	011 010 010 000
		The ninth position $\bigotimes_{\text {performs a write to the selected Fast }}$ Memory location of data previously entered to the Data/Display switches. The Digi-switch is used to select the four most significant bits of the Fast Memory Address. This switch has 16 positions, ranging from 0 to 9 , and A to F , for entry of the four bits.			
MEMORY BANK SELECTION	Gang Switches (6 positions)	The purpose of this gang switch is to select a main memory bank for marginal voltage testing. The four leftmost positions of these switches are labeled BK1 through BK4, respectively. The next position, labeled FT, is the Function Test switch which sets all Memory banks for testing. Pressing one of these switches enables the associated Voltage Meter and Voltage Adjustment screw, and turns on the Marginal Check indicators on the Maintenance Panel. The last position $>$, is used to reset the other switches.			
$\begin{array}{ll} \text { DR } & 01 \\ \text { DR } & 23 \end{array}$	Gang Switches (2 positions)	The purpose of these switches is to cause the display of alternate halfwords of the Data Register. When the Data Register or Fast Memory location has been selected for the display in the Data/Display switches, the setting of this switch determines which halfword will be displayed. Pressing the DR01 causes the left halfword (17 bits) of the register to be displayed in the Data/Display switches. Pressing the DR23 causes the right halfword of the register to be displayed in the Data/Display switches. The DR01 signifies byte 0 and byte 1 of the register; DR23 signifies byte 2 and byte 3 . DR23 must be pressed before the processor can be started.			
NONE	Voltage Meter/ Range 0-25 and Meter Jacks	This Voltage Meter provides visual indication of the voltage being applied to the Main Memory bank. Associated with the meter is the voltage adjusting screw and two separate pairs of meter jacks for maintenance use only.			

The Model 70/45 Processor has four distinct processor states to provide extremely fast interrupt servicing. Combined with the program systems control, these processor states provide efficient interrupt handling.

Upon detection of interrupt the hardware initiates Processor States 3 and 4. It is the programs responsibility to determine what action is to be taken in any processor state.

As an example the Processor States may be used as follows:

Register addressing in each of the processor states is given in Table 6.

Table 6. Register Addressing in the Processor States

Register Number	Processor States			
	P_{1}	\mathbf{P}_{2}	P_{3}	\mathbf{P}_{4}
0	GR	GR	IMR, P_{1} State	Processor Utility
1	GR	GR	ISR, P_{1} State	Processor Utility
2	GR	GR	P counter, P_{1} State	Processor Utility
3	GR	GR	Interrupt Flag Register	Processor Utility
4	GR	GR	IMR, P_{2} State	Processor Utility
5	GR	GR	ISR, P_{2} State	Processor Utility
6	GR	GR	P counter, P_{2} State	Processor Utility
7	GR	GR	GR	Processor Utility
8	GR	GR	IMR, P_{3} State	GR
9	GR	GR	ISR, P_{3} State	GR
10	GR	GR	P counter, P_{3} State	GR
11	GR	GR	GR	GR
12	GR	GR	GR	IMR, P_{4} State
13	GR	GR	GR	ISR, P_{4} State
14	GR	GR	GR	P counter, P_{4} State
15	GR	GR	GR/Weight	GR/Weight

[^1]Interrupt (Cont'd)

Accuracy Control

Since each processing state has its own General-Purpose registers, Interrupt Status register, and Interrupt Mask register, the need for storing and reloáding registers during interrupt processing is virtually eliminated.

Program interrupts occur as a result of errors in data or instruction specifications, input/output operations, external signals, equipment malfunctions, or arithmetic errors. The instruction being executed at the time of interrupt may be completed, suppressed, or terminated depending on the cause of the interrupt.

Any interrupt may be inhibited or permitted in any state by the program. If an interrupt occurs and is permitted, conditions existing in the interrupted state will be automatically stored. Control is then passed to the Interrupt Control State (P_{3}) or Machine Condition State (P_{4}) depending upon the cause of the interrupt. The priority of the interrupt is established and an analysis is made to determine the proper linkage to the Interrupt Response State (P_{2}) so that the interrupt may be processed. Once interrupt processing has been completed, control is returned to the state which was last interrupted and normal processing is resumed.

If several interrupts occur at the same time, the one having the highest priority will be processed. The remaining interrupts will be processed in turn depending upon their priority.

Table 7 summarizes all of the interrupt conditions, their respective priorities, the interrupt state which each initiates, and a brief description of the cause of interrupt.

- The following accuracy controls are incorporated within the 70/45 Processor:

1. Each byte read out of HSM is automatically checked for odd parity.
2. Each data byte read in from a peripheral device is automatically checked for odd parity.
3. Each half-word read out of FM is automatically checked for odd parity.
4. The Read Only Memory (ROM) has a built in automatic error detection scheme.
5. Each four bit key read out of the Memory Protect Memory (optional) is automatically checked for odd parity.

Notes: 1. If a ROM Error or a Memory Protect parity error occurs, the Processor will stop.
2. If a HSM or DR or I/O parity error occurs the interrupt routine will be initiated. However, if a HSM or DR parity error occurs when the machine is in Processor State 4, the Processor will stop.

Table 7. 70/45 Interrupt Conditions

Priority	Condition	State Initiated	Explanation
1	Power Failure	4	Power failure in processor or memory.
2	Machine Check	4	Parity error or equipment malfunction.
3	External Signal 1	3	Signal received on one of the six external lines associated with the directcontrol feature.
4	External Signal 2	3	
5	External Signal 3	3	
6	External Signal 4	3	
7	External Signal 5	3	
8	External Signal 6	3	
9	Not Specified		
10	Selector 1	3	A device on the associated selector channel requires servicing
11	Selector 2	3	
12	Selector 3	3	
13	Not specified		
14	Not specified		
15	Not specified		
16	Multiplexor	3	A device on the multiplexor channel requires servicing.
17	Elapsed Time Clock	3	Elapsed time count has expired.
18	Console Request	3	Manual request for interrupt by the operator.
19	Not specified		
20	Not specified		
21	Supervisor Call	3	Result of execution of Supervisor Call instruction to utilize programmed routines.

Priority	Condition	$\begin{array}{\|c\|} \hline \text { State } \\ \text { Initiated } \end{array}$	Explanation
22	Privileged Operation	3	Privileged instruction attempted in nonprivileged mode.
23	Op-Code Trap	3	Op Code attempted which is invalid for this processor.
24	Address Error	3	Invalid address, specification, or memory protect violation.
25	Data Error	3	Sign of operand incorrect in decimal arithmetic and editing, or incorrect field overlap.
26	Exponent Overflow	3	Result characteristic of floating-point operation is greater than 127.
27	Divide Error	3	Rules pertaining to Divide instruction have been violated.
28	Significance Error	3	Result of floating-point add or subtract has zero fraction.
29	Exponent Underflow	3	Result characteristic of floating-point operation is less than zero.
30	Decimal Overflow	3	Result field is too small to contain the result of a decimal operation.
31	Fixed-Point Overflow	3	High-order carry or high-order significant bits lost in fixed-point operation.
32	Test Mode	3	Allows program control over processor during program testing.

OPTIONAL FEATURES

Memory Protect

Elapsed Time Clock

Direct Control

Selector Channels

A variety of optional features are available to enhance the operation of the 70/45 Processor. These features provide specific functions and are incorporated into the electronic controls of the processor. The functions are described briefly below:

- Feature 5001-45 - Protects the Main Memory from being destroyed by either Programming or by an input device.
- Feature 5002-45 - Incorporates real time control operation within the Processor.
- Feature 5003-45 - Provides the means for the transfer of control and synchronizing of information between Processors.
- Feature 5015 - This feature provides two Selector Channels for controlling the transfer of data to and from a peripheral device.

Feature 5016 - This feature provides three Selector Channels for controlling the transfer of data to and from a peripheral device.

- A number of emulator optional features are used for executing programs coded for other computers on the 70/45:

301 Emulator - Feature 5005-45 - Provides the ability of running 301 System programs utilizing the 70/45 Processor.

1401 Emulator - Feature 5006-45 - Provides the ability of running 1401 System programs utilizing the 70/45 Processor.

501 Emulator - Feature 5007-45 - Provides the ability of running 501 System programs utilizing the 70/45 Processor.

1410 Emulator - Feature 5026-45 - Provides the ability of running 1410 System programs utilizing the 70/45 Processor.

301/501 Emulator - Feature 5036-45 - Provides the ability of running 301/501 System programs utilizing the 70/45 Processor.

1410/1401 Emulator - Feature 5046-45 - Provides the ability of running 1410/1401 System programs utilizing the 70/45 Processor.

OPERATION

PREPARATION FOR OPERATION

Operator's Console

Power Supply Rack

NORMAL OPERATION

Applying Power

Removing Power

- Prior to undertaking the NORMAL OPERATING procedures, the following should be performed:

1. Inspect that there is a sufficient supply of paper and examine the condition of the inked ribbon. (Refer to EQUIPMENT CARE.)
2. Check that the switch (located behind the Operator's Display Panel) is positioned to the mode of operation desired, i.e., LOCAL - OFF LINE. Lift the Top Cover to obtain access to this switch.

- Prior to the application of power to the Maintenance Console Panel and to the Operator's Console, make certain that the AC Distribution Panel circuit breaker switches are all in their ON condition. Ascertain that there are no malfunctioning alarm displays on the Power Supply Control Panel.
- 1. Both MASTER switches (Operator's Console and Maintenance Panel) must be in their ON position to enable DC power control circuits. Press MASTER switch on the Operator's Console, the indicator will light. Press MASTER switch on the Maintenance Panel, its indicator will light. The MASTER switches may be used for emergency POWER OFF switches if it becomes necessary to do so.

2. Press the POWER ON switch on the Maintenance Panel. The indicator will light upon the completion of the power-up sequence cycle, thus indicating the DC power has been applied. The POWER OFF indicator at the Maintenance Panel will be turned off and the POWER READY indicator on the Operator's Console will be turned on.
3. Press and hold down the IDLE pushbutton on the Operator's Console. This provides a lamp check for the console. Ascertain that all indicators on the console are lit. Pressing the IDLE pushbutton will also light the OHW indicator on the Maintenance Panel. Therefore, ascertain that the indicator at the Maintenance Panel is also turned on.
4. Press and hold down the MARG CK pushbutton on the Maintenance Panel. This will provide a lamp check for all indicators and controls on the Maintenance Panel. Ascertain that all indicators and controls on the Maintenance Panel (except POWER OFF and OHW), are lit.
5. Upon the application of power, listen to the fans or blower motors in each equipment rack and make certain that they are operating. Examine filters and clean if necessary. Refer to Equipment Care for details.
6. Press the GEN RES switch on either the Operator's Display Panel or the Maintenance Panel. The Processor is now conditioned for operation.
7. Press the POWER OFF switch on the Maintenance Panel. The DC power will cycle down and when the DC power is removed, the POWER ON indicator will go off and the POWER OFF indicator will light.
8. Press the MASTER switch to remove power.

INITIAL PROGRAM LOADING

Initial Program Loading is accomplished from the Operator's Console in the following manner.

1. Initial Program Load from Operator's Console

Note: It is assumed that the processor power is ready and the Maintenance/Auxiliary Maintenance Panel switches are reset.
a. Establish required conditions at input device.
b. Press GEN RES switch to clear the processor to establish the required condition for start-up. Refer to step 6, under Applying Power.
c. Enter the channel and device number of loading device to the Load Unit Switches.
d. Press LOAD switch. (One record, card or block will be read from input device to main memory starting at address zero.) After completion of the read instructions are executed starting at location zero.
e. When loading has been completed successfully, it will be indicated by the LOAD indicator light being turned off. The START (Run Indicator) will remain lit, (Program Running).
f. In the event that in the process of loading, the loading is terminated due to an error condition the START (Run Indicator) will be turned off and the LOAD indicator will stay lit. In addition, the processor detected errors (MPPE, MMPE, FMPE, IOPE, ROME or PEINT) indicators on the Maintenance Panel and the ERROR indicator on the Operator's Display Panel will be lighted.
g. To re-attempt an Initial Load function repeat from step a.
2. Read and Write Main Memory via the Maintenance Panel Read Main Memory

The procedures for reading and displaying the contents of a Main Memory location using the Maintenance Panel is described as follows:
Note: It is assumed that the processor is halted and the Maintenance Panel switches are reset.
a. Press MMADD position of the Register Selection Switch on the Auxiliary Maintenance Panel.
b. Enter main memory address to MMADD via the DATA/ DISPLAY switches. (This address is an 18 bit, halfword oriented address, of which the least significant bit is unused.)
c. Press the Reset position of Register Select Switches.
d. Press the RDM switch.
e. Press the START switch. The machine will stop with ROM address $(0400)_{8}$ displayed.
f. Press the UR position of the Register Selection Switch on the Auxiliary Maintenance Panel. The contents of the two main memory bytes addressed, will be displayed in the Data/Display Switches.

INITIAL PROGRAM LOADING (Cont'd)
g. To read and display the next halfword addressed main memory location, reset the UR position of the Register Selection Switch and repeat steps e and fabove.
Note: The above steps e through g need only to be repeated to read and display successive halfwords of main memory since MMADD address is incremented and retained on each subsequent read out operation.

3. Write to Main Memory

The procedures for writing to the Main Memory location using the Maintenance Panel is as follows:

Note: It is assumed that the processor is halted and that the Maintenance Panel switches are reset.
a. Press the MMADD position of the Register Selection Switch on the Auxiliary Maintenance Panel.
b. Enter Main Memory address MMADD via the Data/Display switches (18 bit, halfword address, of which the least significant bit is unused).
c. Press Reset position of the Register Select switches.
d. Press WRM switch.
e. Press UR position of the Register Selection switch on the Auxiliary Maintenance Panel.
f. Enter data via Data/Display switches. Entry data consists of two data bytes (16 bits) without parity.
g. Press Reset position of Register Select Switches.
h. Press the START switch.
i. To write to the next main memory halfword, repeat steps e through h.
Note: The above steps e through h need only to be repeated to write to successive halfwords of main memory since the MMADD address is incremented and retained on each subsequent write operation.
4. Read and Write to Main Memory (Combined in One Procedure)

The procedures for reading and writing to Main Memory in a single sequence of steps is as follows:
Note: It is assumed that the Processor is halted and that the Maintenance Panel Switches have been reset.
a. Press MMADD position of Register Selection Switch on Auxiliary Maintenance Panel.
b. Enter main memory address to MMADD via Data/Display switches (18 bit, halfword address).
c. Press Reset position of Register Select switches.
d. Press RDM and WRM switches.

Note: When both are set, RDM takes precedence.

INITIAL PROGRAM LOADING (Cont'd)
e. Press AMI switch to inhibit address incrementing.
f. Press START switch to read.
g. Press UR position of Register Selection switch. Two data bytes, are displayed in the Data/Display switches.
h. Enter data (two bytes without parity) via Data/Display switches.
i. Press Reset position of Register Select switches.
j. Press RDM switch to reset (WRM switch remains set).
k. Press AMI switch to reset.

1. Press START switch to write.
m . To read and write to next halfword of main memory press RDM switch to set and repeat step e.
Note: The reading and writing of subsequent half-words is accomplished by repeating steps e through m only, since MMADD address is incremented and retained.

5. Read Fast Memory

The procedures for reading Fast Memory location using the Maintenance Panel is as follows:
Note: It is assumed that the processor is halted and that the Maintenance Panel switches are reset.
a. Dial the hexadecimal value of the high order 4 bits of the desired Fast Memory Address in the Digi-Switch of the Fast Memory Address switch group.
b. Press the switch position corresponding to the low order 3 bits of the desired Fast Memory address in the gang switch of the Fast Memory switch group.
c. A halfword (16 bits) of the addressed Fast Memory location with its parity bit is displayed in the Data/Display switches. Determination of the halfword displayed is made by use of the DR01 and DR23 switches. Setting the DR01 switch causes display of the first halfword, setting the DR23 switch causes display of the second halfword.

6. Write Fast Memory

The procedure for writing to Fast Memory location using the Maintenance Panel is as follows:
Note: It is assumed that the processor is halted and the Maintenance Panel switches are reset.
a. Dial the hexadecimal value of the high order 4 bits of the desired Fast Memory address in the Digi-Switch of the Fast Memory Address switch group.
b. Press the switch position corresponding to the low order 3 bits of the desired Fast Memory Address in the gang switch of the Fast Memory Address switch group.
c. Select the first halfword to which data are to be entered using the DR01 switch.

INITIAL PROGRAM LOADING (Cont'd)

d. Enter data via the Data/Display switches (16 bits).
e. Set the DR23 switch.
f. Enter data via the Data/Display switches.
g. Press the reset position of the Fast Memory Address gang switch to write.

7. Program Execution

To execute a program that has been previously loaded into HSM, perform the following:
a. Press the GEN RES pushbutton.
b. Place the starting address in FM location for program counter P1; digi-switch position 4 and gang switch position 2. Place the least significant 16 bits of the address in DR23 and the most significant 2 bits of the address in the least significant bits of DR01.
c. Press the START pushbutton.
8. Single Instruction Execution

A single instruction of a given program may be individually staticized and executed as follows:
a. Follow and observe steps a and b of the Program Execution, given above.
b. Press the ICSP (Instruction Complete Stop) pushbutton.
c. Press the START pushbutton. The selected instruction will be executed and the Processor will halt after a ten second delay which allows for I/O termination. Successively pressing the START pushbutton will cause additional instructions in sequence, to be executed. However, there is no ten second delay on any of the subsequent instructions executed (after the initial selected instruction).

9. Manual Instruction Set-up

Single instructions can be inserted and executed by observing the following:
a. Press the GEN RES pushbutton.
b. Enter the instruction into the desired Main Memory locations. (Refer to Write to Main Memory.)
c. Press the WRM pushbutton, thus causing it to be released.
d. Place the instruction address in the Fast Memory location for program counter P1.
e. Press the GEN RES pushbutton.
f. Press the ICSP pushbutton.
g. Press the START pushbutton to execute the instruction.

INITIAL PROGRAM LOADING (Cont'd)

SPECIAL OPERATIONS

10. Error Detection and Interpretation

There are five error display indicators located on the Maintenance Panel and one on the Operator's Display Panel.

The error display indicators on the Maintenance Panel are ROME, IOPE, MPPE, MMPE and FMPE.

The error indicator on the Operator's Display Panel is identified as ERROR. To turn off these indicators press the alarm reset or GEN RES pushbuttons.

The ROME indicator is lit whenever a Read Only Memory Error is detected. This error will also light the ERROR indicator. When this error is detected the processor will stop.

The IOPE indicator is lit whenever a character containing incorrect parity is received from a peripheral device; or during a Load operation whenever a specified device cannot be initiated. This error will also light the ERROR indicator. If this error is detected during a Load operation the processor will stop.

The MPPE indicator is lit whenever a character containing incorrect parity is read out of the Memory Protect memory. This error will also light the ERROR indicator. When this error is detected the processor will stop.
Note: The Memory Protect memory is an optional feature.
The MMPE indicator is lit when a character containing incorrect parity is read out of the Main Memory. This error also lights the ERROR indicator. If this error occurs when the processor is in Processor State 4 or during the Interrupt EO flow, or when the MESP switch is set the machine will stop.

The FMPE indicator is lit when the data read out of the Fast Memory has detected incorrect parity. This error also lights the ERROR indicator and if this error occurs when the machine is in Processor State 4 or during the Interrupt EO flow, or when the MESP switch is set the machine will stop.

The ERROR indicator is also lit if a Program Error is detected while performing a Load Operation. If this occurs the machine will stop.

- Error recovery is effected according to the particular System Recovery Procedure.
- Tables 8, 9, 10 and 11 are furnished as reference material when performing special operations.

Table 8. Summary of Special Operations

Purpose	Initial ROM Address	Description
All zero check, odd bank All zero check, even bank All one's check, odd bank All one's check, even bank	$\begin{aligned} & 0105 \\ & 3250 \\ & 0113 \\ & 2260 \end{aligned}$	All zero location, odd bank All zero location, even bank All one's location, odd bank All one's location, even bank
Writing to consecutive main memory locations	3451	One memory cycle consists of 3 EO times; 3451: (AAD) $23 \rightarrow$ MAR1; Inc. +2 - The address in FM location AAD is transferred, to the main memory address register. The contents of AAD is incremented by two. 3452: IR \rightarrow MMR2 - The contents of IR is transferred to the main memory register and written to memory. 1263: Test EO - This EO does not change the state of the machine. Allows time for completion of the write cycle.
Reading from consecutive main memory locations	1213	One memory cycle consists of 3 EO times; 1213: (BAD) ${ }_{23} \rightarrow$ MAR2; Inc. $+2-$ The address in FM location BAD is transferred to the main memory address register. The contents of BAD is incremented by two. - : Blank EO time. No Action. 1216 or 1222: MMR \rightarrow UR - The contents of the main memory register is transferred to UR.
Writing one half-word to consecutive FM locations	2704	2704: IR \rightarrow (G); Trig. G-1 - Transfer the contents of IR to the FM location addressed by G. The contents of G is decremented by one.
Writing one full-word to consecutive FM locations	2717	2717: DR \rightarrow (G) Trig. G-2 - Transfer the contents of DR to the FM location addressed by G. The contents of G is decremented by two.
Writing one half-word to one FM location continuously	2706	2706: $\mathrm{IR} \rightarrow(\mathrm{G})$; No trig. - Transfer the contents of IR to the FM location addressed by G. G is not changed.
Writing one full-word to one FM location continuously	3713	3713: $\mathrm{DR} \rightarrow(\mathrm{G})$; No Trig. - Transfer the contents of DR to the FM location addressed by G. G is not changed.
Reading from consecutive FM locations	2506	2506: (G) \rightarrow UR; Trig. G-1 - Transfer the contents of the FM location addressed by G to UR. The contents of G is decremented by one.
Reading from one FM location continuously	2500	2500: (G) \rightarrow UR; No Trig. - Transfer the contents of the FM location addressed by G to UR. G is not changed.

Table 9. Conversion Table (FM Address Switches, Hexadecimal Address)

DIGI-SWITCH (DESIGNATIOM)	GANG SWITCH							
	7	6	5	4	3	2	1	0
1	07	06	05	04	03	02	01	00
2	17	16	15	14	13	12	11	10
3	1 F	1 E	1 D	1 C	1 B	1 A	19	18
4	27	26	25	24	23	22	21	20
5	2 F	2 E	2 D	2 C	2 B	2 A	29	28
6	37	36	35	34	33	32	31	30
7	3 F	3 E	3 D	3 C	3 B	3 A	39	38
8	47	46	45	44	43	42	41	40
9	4 F	4 E	4 D	4 C	4 B	4 A	49	48
A	57	56	55	54	53	52	51	50
B	5 F	5 E	5 D	5 C	5 B	5 A	59	58
C	67	66	65	64	63	62	61	60
D	6 F	6 E	6 D	6 C	6 B	6 A	69	68
E	77	76	75	74	73	72	71	70
F	7 F	7 E	7 D	7 C	7 B	7 A	79	78

	$\stackrel{\text { F }}{\substack{\text { a } \\ \text { a } \\ \hline}}$			LSD															
				0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
			0	-	-	-	-		bald branchand	BCTR] ${ }_{\text {Braxch on }}^{\text {count }}$		$\operatorname{ssk}^{\text {SET STORAGE }}$ SEY	$\stackrel{\text { ISK }}{\substack{\text { ISERRT } \\ \text { STOROARE } \\ \text { KEY }}}$		-	-	-	-	
			1	${ }^{\text {LPR }} \underbrace{\text { a }}_{\substack{\text { PoAD } \\ \text { positive }}}$				NR ${ }^{\text {NTN }}$		OR or		LR $\underbrace{\substack{\text { IOAD } \\ \text { Worn }}}_{\text {Li }}$		AR $\cos _{\substack{\text { ADD } \\ \text { woro }}}^{\substack{\text { and }}}$			DR Ditide		
${ }_{\text {Floastig ponin long }}$	${ }_{\text {R }}$		2	LPDR LOAD POSITIVE (LONG)		LTDR LOAD AND TEST (LONG)						LDR ${ }_{\text {L }}^{\substack{\text { Loand } \\ \text { (Lonc) }}}$					DDR ${ }^{\text {Dit }}$		
${ }_{\text {Floantig }}$ Point short			3			LTER LOAD AND TEST (SHORT)		$\underbrace{\text { Her }}$									$\mathrm{mer}^{\text {Der }}$		
			4		$\stackrel{\text { LA }}{\substack{\text { IoAD } \\ \text { ADDREss }}}$			Ex ExEcute		bct ${ }^{\text {branchen }}$				${ }^{\text {Af }} \int_{\text {HaLtword }}^{\text {ado }}$	$\underbrace{\text { sH }}$				
			5	$\mathrm{St}^{\text {ST }} \quad \substack{\text { STORE } \\ \text { worp }}$				N ${ }^{\text {a }}$ AN		$\bigcirc{ }^{-}$		$\pm \leq \substack{\text { Load } \\ \text { word }}$		$\pm{ }^{\text {a }}$			D] Divide	${ }^{\text {AL }}{ }^{\text {a }}$	sL. ${ }_{\text {s. }}^{\substack{\text { Subrpacr } \\ \text { Locicai }}}$
Floating point long			6	$\stackrel{\text { STD }}{\substack{\text { sTorg } \\ \text { (LOMO) }}}$	-	-	-					$\stackrel{\text { LD }}{\substack{\text { LOAD } \\ \text { (LoNo })}}$							
Floating ponit short			7			-											$\mathrm{DE}^{\text {DE }}$	$\mathrm{AU}_{\substack{\text { UNNORDAIIzED } \\ \text { (SHORT) }}}^{\substack{\text { ADD }}}$	SU SUBTRACT UNNORMALIZED (SHORT)
			8	$\mathrm{DLS}^{\text {DLE }}$		PCProcram Costrol	dig diamose												
Logical And I/O			9			MvI move		NI ${ }^{\text {and }}$		\square	XI ${ }_{\text {x }}^{\substack{\text { exclusive } \\ \text { or }}}$	$\mathrm{La}_{\substack{\text { LM }}}^{\substack{\text { LoAp } \\ \text { mulitie }}}$	-	-	-				
			A		-	-	-	-	\square	-		-	-	-	$\underline{\square}$	\square	\square	—	
			B		-	-		-	-	-		-		-					
			c			-	-	- -			-	-	-	\square	- -	\square	-	-	-
Logical						MVC ${ }^{\text {a }}$ MOVE	${ }_{\text {Nvz }}^{\text {ave }}$	$\mathrm{NC}^{\text {NC }}$ AND		${ }^{\circ} \mathrm{C}$ (${ }^{\text {or }}$	$\mathrm{xc}_{\substack{\text { xc }}}^{\text {ExClusive }}$ OR	$\underbrace{\text { LSP }} \int_{\text {scratich-PAD }}^{\text {Lid }}$			-	$\mathrm{tr}^{\text {tr }}$ transiate		ED EDit	
				-	-	-	-	-		-	-	- -	- -	-	-	-	-	-	-
decmal			F			PACK ${ }^{\text {Pack }}$	UNPK UNPACK	-		- [${ }^{\text {ZAP }}$	${ }_{\text {cp }} \underbrace{\substack{\text { converar } \\ \text { Decomal }}}$	${ }_{\text {AP }}{ }^{\text {a }}$			$\mathrm{DP}^{\text {DP }}$	-	

${ }^{\mathrm{RR}}$| OP CODE | R 1 | R 2 |
| :--- | :--- | :--- |

| Rx | OP CoDE R1 X 2 B 2 | D 2 |
| :--- | :--- | :--- | :--- | :--- |

Rs | of Coore | R1 | R3 | B2 | D2 |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |

Table 11. Fast Memory Layout and Register Assignment

DIg--switch (Designation	gang switch																	
		7	 7E 6		5 7 ZD ASSEMBLY sTATUY REGITER		4		3		2		1		0			
F	7F $\underset{\substack{\text { UTILITTY } \\ \text { NO. } 3}}{\substack{\text { 2 } \\ \hline}}$					CHANNEL COMMAD REGISTER I REGISTER I	$\lim _{\text {TB }}^{\text {TB }} \quad$CHANNEL COMNAND REGISTER I		7 A	CHANNELADDRESSREGISTER		$\begin{gathered} \text { PROCESSOR } \\ \text { UNILITY } \\ \text { No. } 19 \end{gathered}$	${ }^{78}$	$\begin{gathered} \text { PROCESSOR } \\ \text { UTILITY } \\ \text { NO. } 18 \end{gathered}$				
															Registers - selec			
	${ }_{7}^{77}$		76		${ }^{75}$						${ }^{73}$		72		${ }^{71}$		${ }^{70}$	
E	FLOATING POINT REGISTER NO. 6				floating point register no. 4				$\begin{aligned} & \text { FloATING point } \\ & \text { REGISTER No. } 2 \end{aligned}$				$-\underset{ }{\text { floating point }}$ Register no. 0					
D			$\text { E. } \begin{gathered} \text { GENERAL PURPOSE } \\ \text { REGISTER } \\ \text { NO. } 14 \\ \text { P1 } \end{gathered}$		${ }^{6 D}$	$\underset{\substack{\text { GENERAL PURPOSSE } \\ \text { REGISER } \\ \text { No. } 13 \\ \text { Pl }}}{\text {. }}$			$\cos _{\substack{\text { 6B }}}^{\substack{\text { GENERAL PURPOSE } \\ \text { REGISTRR } \\ \text { No. } \\ \text { il } \\ \mathrm{p}_{1}}}$									
C	67	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGISTER } \\ \text { No. } \\ \text { P1 } \\ \text { P1 }}}{\text {. }}$	66	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGISTER } \\ \text { No. } \\ \text { P1 }}}{\text { p }}$	65	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGIITRE } \\ \text { No. } \\ \text { P1 }}}{\text { E. }}$		$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGITER } \\ \text { NO. } \\ \text { P1 }}}{\text { P1 }}$	$\operatorname{cic}_{\substack{\text { 6. }}}^{\substack{\text { GENERAL PURPOSE } \\ \text { REGIITRR } \\ \text { No. } \\ \text { P1 }}} \mid$		62 $\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGISER } \\ \text { No. } \\ \text { P1 }}}{\substack{\text { N1 }}}$		61. $\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGISTRR } \\ \text { NOO } \\ \text { P1 }}}{\text { P1 }}$		60 $\underset{\substack{\text { GENERAL PURPOSE } \\ \text { RGGITTER } \\ \text { No. } \\ \text { p1 }}}{\text { on }}$			
B	5 F	$\begin{aligned} & \text { UTiLILTY } \\ & \text { No. } 3 \end{aligned}$	5 E	$\begin{aligned} & \text { UTILITYY } \\ & \text { No. } \end{aligned}$	5D	$\begin{aligned} & \text { ASSEMBLY } \\ & \text { STATUUY } \\ & \text { REGITTER } \end{aligned}$		$\begin{gathered} \text { CHANNEL } \\ \hline \text { COMNAND } \\ \text { REGITER I } \end{gathered}$	5 B CHANNEL COMMADD REGISTER II		5ACHANNEL AEDRSS REGISTER			$\begin{gathered} \text { PROCESSOR } \\ \text { UTILITY } \\ \text { NO. } 17 \end{gathered}$	58$\substack{\text { PROCESSOR } \\ \text { UTILITY } \\ \text { No. } 16}$			
A	57	$\begin{aligned} & \text { UTILITYY } \\ & \text { No. } 3 \end{aligned}$	56	$\begin{aligned} & \text { UTLILTY } \\ & \text { no. } \end{aligned}$	5						52CHANNEL ADDESS REGISTER		51	$\begin{gathered} \text { PROCESSOR } \\ \text { UTILITY } \\ \text { No. } 15 \end{gathered}$	${ }^{50}$	$\begin{gathered} \text { PROCESSOR } \\ \text { UTIIITYY } \\ \text { No. } 14 \end{gathered}$		
9	4 F	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGITER } \\ \text { No. } \\ \text { P2 }}}{15}$	$4{ }^{4}$	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGITER } \\ \text { NO. } \\ \text { P2 } 24}}{ }$ $\stackrel{\text { NO. }}{\text { P2 }}{ }^{14}$	4D	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REITTERR } \\ \text { Not } \\ \text { P2 } \\ \text { P2 }}}{\text {. }}$		$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REITSER } \\ \text { NO. } \\ \text { P2 } 2}}{12}$										
8	47	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REISTER } \\ \text { No. } \\ \text { p2 }}}{\text { 7 }}$	46	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REITITER } \\ \text { No. } \\ p_{2}}}{\text {. }}$	${ }^{45}$	$\underset{\substack{\text { GENERAL PURPOSEE } \\ \text { REISER } \\ \text { No. } \\ \mathrm{P}_{2}}}{\text {. }}$		$\underset{\substack{\text { GENERAL PURPOSEE } \\ \text { REITER } \\ \text { NO. } \\ \text { P2 }}}{\text { 4 }}$							40 $\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REGIITRE } \\ \text { No. } \\ \text { P } 20}}{\text { and }}$			
7	${ }^{3 \mathrm{~F}}$]	$\begin{aligned} & \text { UTiLILTYY } \\ & \text { No. } \end{aligned}$	3 S	$\begin{aligned} & \text { UTiLITTY } \\ & \text { No. 2 } \end{aligned}$	3D	ASSEMBLY STATUS REGITER I/0	${ }_{\mathrm{CHANN}}^{3 \mathrm{Cl}}$	HANNEL REGISTER I EL REGISTERS - SELEC	$\overbrace{\text { 3B }}^{\substack{\text { 3B }}}$CHANNEL COMANAN REGITER I I				${ }^{39}$	$\begin{gathered} \text { PROCESSOR } \\ \text { UTILTTY } \\ \text { No. } 13 \end{gathered}$	${ }^{38}$	$\begin{gathered} \text { PROCESSOR } \\ \text { UTILITY } \\ \text { NO. } 12 \end{gathered}$		
6	37	UTILITYY No. 3	36	$\begin{aligned} & \text { UTILITYY } \\ & \text { No. } 2 \end{aligned}$	${ }^{35}$	$\underset{\substack{\text { ASSEMBLY } \\ \text { sTATUS } \\ \text { REGISTER }}}{\text { I/O }}$		CHANNEL COMNAND REGITTR ERES	$\left\lvert\, 33$CHANNEL COMNAD REGISTER II\right.		${ }^{32}$	$\begin{aligned} & \text { CHANNEL } \\ & \text { ADDRESS } \\ & \text { REGISTER } \\ & \hline \end{aligned}$	31	$\begin{gathered} \text { PRocessor } \\ \text { UTIIITYY } \\ \text { No. } 11 \end{gathered}$	30	$\begin{gathered} \text { PROCESSOR } \\ \text { UTIIITYY } \\ \text { No. } 10 \end{gathered}$		
5	${ }^{2 \mathrm{~F}}$	GENERAL PURPOSE REGISTER NO. 15 (WEIGHT) P3	${ }^{2 E}$		${ }^{2 \mathrm{D}}$	$\underset{\substack{\text { GENERALI PURPOSE } \\ \text { REGITER } \\ \text { No. } \\ \text { P3 } 3}}{13}$		$\substack{\text { GENERAL PURPOSE } \\ \text { REGITTER } \\ \text { No. } 12 \\ \text { P3 }}$			2 AA	$\begin{aligned} & \begin{array}{c} \text { PROGRAM } \\ \text { COUNTER } \\ \text { P3 } \end{array} \end{aligned}$	29		${ }^{28}$	$\begin{gathered} \hline \text { INTERRUPT } \\ \text { MASK } \\ \text { REGIITER } \\ \text { P3 } \end{gathered}$		
4	27	$\underset{\substack{\text { GENERAL PURPOSE } \\ \text { REISTER } \\ \text { No. } \\ \text { P3 } \\ \text { T }}}{\text {. }}$	26	$\begin{gathered} \text { PROGRAM } \\ \text { COUNTER } \\ \text { P2 } \end{gathered}$	25	$\begin{gathered} \text { INTERUPT } \\ \text { TTATUS } \\ \text { REGGTITER } \\ \text { P2 } \end{gathered}$	${ }^{24}$	$\begin{gathered} \text { INTERRUPT } \\ \text { MASK } \\ \text { REGISTER } \\ \text { P2 } \end{gathered}$	2	$\begin{gathered} \text { INTERRUPT } \\ \text { FLAG } \\ \text { REGISTER } \end{gathered}$	22	$\begin{aligned} & \text { PROGRAM } \\ & \text { COUNTER } \end{aligned}$ P1	${ }^{21}$	$\begin{gathered} \hline \text { INTERRUPT } \\ \text { STATUS } \\ \text { REGISTER } \\ \text { P1 } \end{gathered}$	20	$\begin{gathered} \hline \text { INTERRUPT } \\ \text { MASK } \\ \text { REGISTER } \\ \text { P1 } \end{gathered}$		
3	${ }^{17}$	$\begin{aligned} & \text { UTILITYY } \\ & \text { No. } 3 \end{aligned}$	1E]	$\begin{aligned} & \text { UTLiLTYY } \\ & \text { No. } 2 \end{aligned}$	${ }^{10}$	$\underbrace{\text { I/O }}_{\substack{\text { ASSEMBLY } \\ \text { STATUS } \\ \text { REGITER }}}$		CHANNEL command EL REGISTERS - SELE	1BCHANNEL COMMAND REGITTER II		1 A	$\begin{aligned} & \text { CHANNEL } \\ & \text { ADDRESS } \\ & \text { REGITTER } \end{aligned}$	19	PROCESSOR UTILITY NO. 9	$18 \begin{gathered}\text { PROCESSOR } \\ \text { UTLITTY. } \\ \text { No. } 8\end{gathered}$			
2	17	$\begin{aligned} & \text { UTILITYY } \\ & \text { NO. } \end{aligned}$	${ }^{16}$	$\begin{aligned} & \hline \hline \text { UTILITYY } \\ & \text { No. } 2 \end{aligned}$	${ }^{15}$	STATUS REGISTER \qquad I/o		CHANNEL COMMAND REGIITER I L REGISTERS - MULTIP	$\|$13 CHANNEL COMMAND REGITEER II		12	$\begin{aligned} & \text { CHANNEL } \\ & \text { ADREESE } \\ & \text { REGISTER } \end{aligned}$	11	$\begin{aligned} & \text { UTILITYY } \\ & \text { No. } 1 \end{aligned}$	${ }^{10}$	$\begin{gathered} \text { PROCESSOR } \\ \text { UTILITY } \\ \text { NO. } 7 \end{gathered}$		
1	${ }^{0 \times}$	$\begin{aligned} & \text { GENERAL PURPOSE } \\ & \text { REGISTER NO. } 15 \\ & \text { (WEIGHT) } \end{aligned}$ P4	${ }^{\text {OE }}$	$\begin{aligned} & \text { PROGRAM } \\ & \text { COUNTER } \end{aligned}$ P4	OD	$\begin{gathered} \text { INTERRUPT } \\ \text { SEATUS } \\ \text { REGITTER } \\ \text { D1 } \end{gathered}$	${ }^{\circ} \mathrm{C}$	$\begin{gathered} \hline \text { INTERRUPT } \\ \text { MASK } \\ \text { REGISTER } \\ \text { P4 } \end{gathered}$										
0	${ }^{07}$	B ADDRESS REGISTER	06	A ADDRESS REGISTER	${ }^{05}$	$\begin{gathered} \text { PRocEssor } \\ \text { UTIITTY } \\ \text { No. } 6 \end{gathered}$	${ }^{04}$	$\begin{aligned} & \text { PROCESSOR } \\ & \text { UTILITY } \\ & \text { NO. } 5 \end{aligned}$	${ }^{03}$	$\begin{aligned} & \text { PROCESSOR } \\ & \text { UTILITY } \\ & \text { NO. } 4 \end{aligned}$	${ }^{02}$	$\begin{aligned} & \text { PROCESSOR } \\ & \text { UTILITY } \\ & \text { No. } 3 \end{aligned}$	${ }^{01}$	$\begin{gathered} \text { PROCESSOR } \\ \text { UTIIITY } \\ \text { No. } 2 \end{gathered}$	00	$\underset{\substack{\text { PRoCESSOR } \\ \text { UIIITTY } \\ \text { No. } 1}}{\text { N. }}$		

NUMBER IN UPPER LEFT-HAND CORNER IS HE XADECIMAL ADDRESS

An I/O device may be initiated directly from the Maintenance Console by observing the following procedure:

1. Set ICSP switch.
2. Set up Utility Registers 1, 2, 3 and 4 in the FM as indicated below.

Utility No.	Hex. Address	FM Switches		Contents
		Digi- Switch	Gang Switch	
1.	$(00){ }_{16}$	0	0	
2.	$(01)_{16}$	0	1	
3.	$(02){ }_{16}$	0	2	
4.	$(03){ }_{16}$	0	3	5 3 8 8 8 Flags: 000 $0 —$ Byte CountDR07-DR00 Note 2.

Notes: 1. If the memory protect feature is not installed the key should be set equal to zero. If the memory protect feature is installed the proper key should be set. If an all zero key is set memory protection will not occur.
2. Byte count $=0$ is the maximum count.
3. Press the GEN RES pushbutton.
4. Place $(9 \mathrm{C})_{16}$ in the OR register.
5. Place the proper channel number in the IR register.

6. Push the ROMADD clear pushbutton. Set up (3602) 8 on the ROMADD pushbuttons.
7. Press the START pushbutton.

ROM Check

A partial check of the ROM (Read Only Memory) can be made from the Maintenance Panel.

The ROM consists of two standard banks, one bank contains Elementary Operations (EO's) whose addresses are odd, and the other bank contains EO's whose addresses are even. There are two standard locations in each bank, one of which is wired with an all one pattern and the other is wired with an all zero pattern.

To check these locations proceed as follows:

1. Press the GEN RES pushbutton.
2. Press the SFSP pushbutton.
3. Press the ROMADD clear pushbutton.
4. Set the ROMADD pushbutton to the desired ROM address.
5. Press the START pushbutton.
6. Check the EO field pattern displayed on the Maintenance Panel. If the pattern displayed is incorrect, the machine is malfunctioning and service is necessary.

ROM Address	Correct EO Field Pattern
$(0113)_{8}$	All ones
$(0105)_{8}$	All zeros
$(2260)_{8}$	All ones
$(3250)_{8}$	All zeros

Note: When the above procedure is followed, the ROME indicator will light. This is a normal occurrence and should not be taken as an indication of an alarm condition.

The aforementioned procedure, selects and displays ROM EO pattern. If it is desired to continuously cycle on the EO; i.e., repeatedly address and read out of the ROM, the following steps should be taken:
a. Press the GEN RES pushbutton.
b. Press the FR (Function Repeat) pushbutton.
c. Press the ALI (Alarm Inhibit) pushbutton.
d. Press the ROMADD clear pushbutton.
e. Set the ROMADD pushbuttons to the desired ROM address.
f. Press the START pushbutton.
g. Check the EO field pattern displayed on the Maintenance Panel. If the pattern is incorrect the machine is malfunctioning and service should be requested.
h. To stop the machine press the SFSP pushbutton.

IMPORTANT

It is to be emphasized that the above must be considered as a partial check. Even though the previous checks are correct, it is still possible to have an incorrect EO pattern at some other ROM address.

Writing to Consecutive Main Memory Locations

Reading from Consecutive Main Memory Locations

Writing to Consecutive Fast Memory Locations

This procedure can be used to clear the Main Memory.

1. Press the GEN RES pushbutton.
2. Press the FR pushbutton.
3. Press the ROMADD clear pushbutton.
4. Set the ROMADD pushbutton to $(3451)_{8}$.
5. Set the initial starting address in FM location for AAD. The FM hexadecimal is 06 and the correct switch positions are 06.
6. Set the desired two bytes to be written in IR.
7. Press the START pushbutton. The memory will by cycled through consecutive locations, writing into each location the halfword stored in IR.
8. To stop the cycle, press the SFSP (Single Function Stop) pushbutton. To write one location continuously proceed as above, but before pressing START, press AMI (Address Modification Inhibit).

This procedure can be used to check for and locate parity errors in Main Memory.

1. Press the GEN RES pushbutton.
2. Press the MESP (Machine Error Stop) pushbutton.
3. Press the FR (Function Repeat) pushbutton.
4. Press the ROMADD Clear pushbutton.
5. Set the ROMADD address pushbutton to $(1213)_{8}$.
6. Set the initial starting address in FM location for BAD. The FM hexadecimal address is 07 and the correct switch positions are 07.
7. Press the START pushbutton. The memory will be read from consecutive locations and the data put in the UR Register.
Note: If a parity error is detected the machine will stop. If no error is detected the address will wrap around and it is then necessary to press the SFSP to stop the cycle.
8. To read one location continuously proceed as above, but before pressing START, press AMI (Address Modification Inhibit).

- This procedure can be used to clear Fast Memory. Either a halfword or a full word can be written to FM. If a halfword is written, the halfword not written in a particular cycle is checked for correct parity. If one word is written per cycle, no parity check occurs.

1. Press the GEN RES pushbutton.
2. Press the FR (Function Repeat) pushbutton.
3. Press the ROMADD clear pushbutton.

If halfword operation:
4. Set the ROMADD pushbuttons to (2704) $)_{8}$.

Writing to Consecutive Fast Memory Locations (Cont'd)

5. Set the initial starting address in the seven most significant bits of the G Register. The least significant bit of G Register determines which half of the FM word will be written to initially. If $\mathrm{GO}=1$, the 16 least significant bits of FM word will be written to initially. If $G O=0$ the 16 most significant bits of the $F M$ word will be written to initially.
6. Set the desired halfword to be written to IR.
7. Press the START pushbutton. The memory will be cycled through consecutive locations, writing into each halfword the data placed in IR.
8. To stop the cycle, press the SFSP (Single Function Stop) pushbutton.

If full-word operation:

4. Set the ROMADD pushbutton to (2717) ${ }_{8}$.
5. Set the initial starting address in the seven most significant bits of the G Register.
6. Set the desired word in DR.
7. Press the START pushbutton. The memory will be cycled through consecutive locations, writing into each word the data placed in DR.
8. To stop the cycle, press the SFSP (Single Function Stop) pushbutton.

To write a halfword to one FM location continuously;
In step 4 of the halfword operation set ROMADD pushbutton to (2706) ${ }_{8}$.

To write a full word to one FM location continuously;
In step 4 of the full word operation set ROMADD pushbuttons to (3718) 8 .

Reading From Consecutive Fast Memory Locations

This procedure can be used to check for and locate parity errors in Fast Memory.

1. Press the GEN RES pushbutton.
2. Press the MESP (Machine Error Stop) pushbutton.
3. Press the FR (Function Repeat) pushbutton.
4. Press the ROMADD clear pushbutton.
5. Set the ROMADD address pushbutton to $(2506)_{8}$.
6. Set the initial starting address in the seven most significant bits of the G Register.
7. Press the START pushbutton. The memory will be read from consecutive locations and the data put in UR.
Note: If a parity error is detected the machine will stop. If no error is detected the address will wrap around and it is then necessary to depress SFSP to stop the cycle.
To read one location continuously, in step 5 above set the ROMADD pushbutton to $(2500)_{8}$.

General

Inspection

- The equipment care schedule for the 70/45 Processor and 70/97 Operator's Console should not interfere with the operating schedule of the system or with its associated equipment. The schedule for cleaning and performing other routine maintenance procedures should be pre-determined for the operating shift. With a well planned schedule there will be a minimum of overlap between operating time and equipment care time.
- It is recommended that a pre-operational inspection be conducted prior to placing the Processor into operation. Operators should be alert at all times to note any unusual condition or warning indications. Replacement of paper supply will depend upon how frequently it is used.

WARNING

WHEN PERFORMING ANY SERVICING PROCEDURES TO THE PROCESSOR AND/OR CONSOLE TYPEWRITER, REMOVE ELECTRICAL POWER TO AVOID POSSIBLE PERSONAL INJURY.

Filters

- The filters are housed in a tray assembly at the bottom of the platter frame. To remove proceed as follows: (See Figure 15.)

1. Unlock the slide fasteners located at each side of the tray assembly.
2. Pull the filter forward and remove from tray assembly.
3. Clean filter by washing through a mild soap detergent, rinse thoroughly and dry.

Figure 15. Removing Filters

Loading Paper

Ribbon Replacement

- To replenish the paper supply proceed as follows:

1. Raise the Top Cover.
2. Place the fan-fold (Form No. 8513 or equivalent) paper onto the rear shelf of the console. Position to align with typewriter sprocket feed mechanism.
3. Feed the paper through the slot in the rear of the cover. (Reference Figure 16.)
4. Push the release lever toward the rear to raise the paper retainer fingers off the platen.
5. Feed the paper under the platen and engage the first hole on each side of the paper with the sprocket pin protruding on each side of the lower front side of the platen.
6. Feed out approximately 3 inches of paper by pressing the LOC LF keylever if the typewriter has power applied, or by utilizing the manual platen knob if the typewriter does not have power applied.
7. Place the paper under the paper retainer fingers and push the fingers down against the platen.
8. Close the Top Cover and ensure that the paper is properly situated to enable it to move freely when typewriter is in operation.

- To install a new ribbon in the typewriter proceed as follows: (Reference Figure 17.)

1. Obtain access to the typewriter by raising the Top Cover.
2. Snap the spring latch which secures each spool in position, upward.
3. Raise the inked ribbon up over the roller and out of the ribbon reverse levers on both sides of the typing unit.
4. Remove the ribbon from the two ribbon guides on the type box carriage.
5. Lift both spools and the ribbon off the typing unit.
6. Unwind and disconnect the ribbon from one of the spools. Discard the other spool and the ribbon.
7. Connect the end of the new inked ribbon to the empty spool and wind on enough ribbon to cover the metal eyelet on the end of the ribbon.
8. Install both spools on their respective mechanisms. Rotate each spool slightly to ensure that each spool is properly engaged with the pin on the mechanism.
9. Slip the ribbon around each roller and into the ribbon reverse levers on both sides of the typing unit.
10. Position the ribbon in the two guides on the type box carriage.
11. Snap the two spring latches downward to secure the spools on their mechanisms.
12. Place the paper in the typing position and lower the cover.

Figure 16. Loading Paper

Figure 17. Ribbon Replacement

Lamp Replacement DISPLAY INDICATOR LAMPS

- To réplace defective indicator lamps (Figures 18 and 19) in either the Operator's Display Console or Maintenance Panel, proceed as follows:

1. Obtain access to the interior of the Maintenance Panel by opening the front hinged cover. Obtain access to the Operator's Display Panel by raising the cover upward and freeing it from its holding latches.
2. Using a Bulb Extractor tool, carefully grasp the envelope of the defective bulb and with moderate pressure remove bulb from its socket. (See Figure 20.)
3. Install a new light bulb (G. E. Type \#334). Make certain bulb base is firmly fitted into its socket.
4. Perform lamp check test to assure that bulbs are indicating properly.

Figure 18. Interior View of $70 / 45$ Processor Maintenance Panel

Figure 19. Removal of Operafor's Display Panel Cover

Figure 20. Light Bulb Replacement

TYPEWRITER LIGHT

Fuse Replacement

To replace the lamp bulb located under the Top Cover of the Operator's Console proceed as follows:

1. Raise the entire Top Cover of the Operator's Console.
2. Remove the defective lamp by pushing and turning it counterclockwise until the lamp is released from the bayonette type socket. (See Figure 21.)
3. Insert new lamp (G. E. 1314X) into the socket with the lamp pins coinciding with the slot in the bayonette socket. Twist the lamp in a clockwise direction until it is locked into place.
4. Lower Top Cover.

The Operator's Console is equipped with two tubular glass fuses which are accessible when the top cover of the Console is raised. (See Figure 22.)

CAUTION

Never attempt to replace a fuse with the power on. Whenever a fuse is being replaced make certain that the power switch is in its OFF position.

Figure 21. 70/97 Operator Console (Top Cover Ass'y Raised)

Figure 22. Fuse Locations (Rear View of the Electrical Unit)

Fuse Replacement (Cont'd)

To replace a fuse proceed as follows:

1. Raise the Top Cover.
2. Determine which of the two fuses has blown by the following:
a. The MDL $3 / 8$ ampere fuse when blown, will remove the current from the signal line and will be evidenced by excessive chattering in the typing unit.
b. The MDX 4 ampere fuse, when blown, will remove all electrical power from the typewriter.
3. Turn the fuse holder cap counter-clockwise and lift the cap with the attached fuse from the fuse holder.
4. Slide the defective fuse out of the cap.
5. Install a new fuse into the cap.
6. Insert the cap and fuse into the fuse holder, ensuring the slot in the fuse holder and the catch on the cap are aligned.
7. Push the cap downward and turn it clockwise to secure it in position.
8. Place power switch to its ON position.

Note: If the replaced fuse blows the first time power is applied or shortly thereafter, call the Customer Service Representative.

Cleaning the Type Pallets

- To remove and clean the type pallets proceed as follows:

1. Raise the Top Cover.
2. Push the type box latch to the right to release it. (See Figure 23.)
3. Lift the right side of the type box up to approximately 45 degrees and pull to the right to disengage it from the left-hand bearing stud.
4. Clean the face of the type pallets using Eberhard Faber Star Type Cleaner No. 1226.
5. With the right side of the type box elevated approximately 45 degrees, engage the left side of the box with the left-hand bearing stud and push the right side of the box downward.
6. Ensure that the box is firmly seated on the bearing stud. Place the point of the latch in the notch on the box and raise the latch to the left in its locked position.
7. Lower the Top Cover.

Figure 23. Removal of the Type Box

- To clean the typewriter platen proceed as follows:

1. Raise the Top Cover.
2. Using the manual platen knob, back the paper completely out of contact with the platen.
3. Using a clean lint-free cloth and an approved cleaning agent, clean the entire rubber portion of the platen.
4. Wipe the platen with a dry, clean, lint-free cloth.
5. Install the paper in the typewriter (refer to LOADING PAPER).
6. Close the Top Cover.

GLOSSARY	
A Rack	- The left side of the Processor as viewed from the front.
AC	Alternating current as provided by the building power source; used by the Processor Power Supply to generate dc voltage.
Address	- A numerical configuration used to reference a byte location in memory.
Alternate Action Pushbutton Switch	- A switch having two conditions or states.
B Rack	- The right side of the Processor as viewed from the front.
Binary	- A numbering system founded on the base two.
Bit	- A unit notation, represented by zero or one, indicating the exponential power in the binary system by virtue of its position with respect to zero (reading from right to left).
BPU	The Basic Processing Unit (excluding Memory, Power Supply, and peripheral devices) responsible for all data handling, data processing, decision, and control functions.
Branching	- Causing an instruction sequence to be altered by transferring to another portion of the program if a preassigned condition is sensed.
Busy	A signal used internally to indicate that a particular device, Control Electronics (CE), or function is presently engaged in a previously initiated operation.
Byte	- A group of binary digits usually operated on as a unit.
Character	- One of a set of digits or letters that may be combined to express information. A group of characters in one configuration may be considered as a single character in another configuration.
Code	A system of symbols and the rules for their use in representing information.
Command	- An electronic signal, generated as the result of an instruction (such as read, write, etc.), that causes an input/output device to respond.
Console	- The main control center, accessible to the operator, of the Processor.
Core	- A single magnetic unit, capable of storing one bit of a byte storage location in memory. Information is represented by polarizing the core.
C.S.R.	- Customer Service Representative.
Cycle	- A Processor electronic cycle; the time required to decode and execute one phase of an operation. In the 70/45 1.44 microseconds duration.

Data \quad The basic information entered into the system for processing.
DC Direct current as transformed by the Processors Power Supply; used by the Processor electronics.

Display The contents of selected registers represented on the console by a series of indicators. A lit indicator implies the presence of a "one" bit.

Elementary Operations (EO's)

Emulator

Error Recovery

Execute

Fast Memory

Flip-Flop

GEN RES

Halt

Hardware

Hexadecimal
HSM
Illegal

Initialize

- Fixed microprogramming instructions which control basic computer operations. Instruction execution is accomplished by executing a sequence of EO's.
- An optional memory storage feature which when employed with the 70/45 Processor will provide the means for the direct execution of most programs written for the specific optional emulator feature selected. The added storage contains microprograms which cause the Processor to decode and execute instructions, through the EO facilities of the 70/45 Processor.
- The method or methods utilized to continue (or restart if necessary) a program when a mechanical or electronic malfunction has occurred.
- Perform the operation as specified by the OP code of an instruction.
- A fast micromagnetic storage device containing the General Purpose, Floating Point, and various other registers to facilitate processor and program control. (Refer to Table 11.) A small, very fast memory (relative to the processor's main memory) used to replace registers for the storage of data. (Also referred to as Scratch Pad.
- A device, sometimes called a trigger having two stable states termed ON and OFF, 0 and 1, set and reset, etc.
- A manually generated signal used to reset certain registers and parity indicators in the Processor.
- An orderly ending to processing activity upon completion of an instruction or program.

The individual components, such as electrical and mechanical parts that comprise Computers, Readers, Printers and Tape Units, from which a Computer system is developed.

- A numbering system founded on the base sixteen.
- High Speed Memory.
- Referring to an instruction or operation which is not part of the 70/45 repertoire.

To set a condition, routine, or word to its original (or beginning) state.

| Interrupt | A temporary interruption of normal processing, resulting from the
 occurrence of unique conditions, and requiring special handling peculiar
 to those conditions. |
| ---: | ---: | :--- |
| Indicator | A light, located on Maintenance Console Panel (Maintenance/Auxiliary
 Panels), Operator's Display Panel or Power Supply Control Panel, etc.,
 that is lit to indicate a particular condition occurring in the Processor,
 typewriter or Power Supply. |
| Initiate | To start. |
| Input | Information taken from an external or secondary device into the in-
 ternal storage of the Processor. |
| I/O Device | An I/O device (input/output) is used to transmit data to or receive
 data from the Processor or secondary device. A Card Reader, Typewriter,
 or Paper Tape Unit is considered an I/O device. |
| Item/Field | A set of characters or symbols that are used to define an operation. |
| Lead item/field consists of any number of bytes that specify a particular | |
| unit of information (numeric field, alphabetic name, street address, stock | |

Panel \mid A section of a console containing controls, indicator lights, etc., arranged in ordered groupings of allied functions, such as the Operator's Display panel and the Maintenance Console panel.

Parity

Peripheral

Processing State

Processor

Program

Pushbutton

Pushbutton Indicator
Read Only
Memory (ROM)

Record

RDM
Reset
Set
Self-Terminating

Sub routine

Transfer
Write

WRM

- A scheme of checking "correctness" of a binary digit where the total number of ones must always be odd (odd parity) or even (even parity) depending on the requirements for the particular device or system.

Referring to equipment, such as Typewriters, Paper Tape Devices, etc., that are sub-units of a computer system but are physically located external of the main Processor cabinet.

- The normal mode of operation of the Processor in which the main program is executed.
- The central processing unit containing the main storage device (memory), power supply, and necessary electronics to perform all the logical processing and modifications of data of a Computer system.
- A sequence of step-by-step operations which are to be performed by the Processor in order to solve a problem, modify or rearrange data.
- A switch activated by depression.
- A light, associated with a given pushbutton, which will be turned on when the function of that pushbutton is invoked.

A memory for storing fixed, or invariant data. The reading operation is nondestructive of the data.

- The data contained between two identifying symbols such as: record gaps, storage marks, column 0 and column 80 , etc.
- Read Memory
- To return Computer components to a specified initial or static state.
- To force a storage device or indicator to a prescribed state.
- An I/O device which will effect an orderly halt upon recognition of a gap on tape, column 80 on cards, etc.

A segment of a program usually stored apart from the main program and entered into and out by a branch instruction.

- Cause data to be moved from one storage area or device to another.
(1) Transmit data from memory storage to an input device (e.g., write to tape, write to punch, etc.).
(2) Enter data into memory storage (e.g., write to memory).
- Write to Memory. Enter data into memory storage.

APPENDIX A

EXTENDED BINARY-CODED-DECIMAL INTERCHANGE CODE (EBCDIC)

HEX	\rightarrow	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
\downarrow	0123	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	NUL				PF	HT	LC	DEL								
1	0001					RES	NL	BS	IL								
2	0010					BYP	LF	EOB	PRE			SM					
3	0011					PN	RS	UC	EOT								
4	0100	SPACE										¢	-	<	(+	1
5	0101	\&										!	\$	*)	;	\square
6	0110	-	1									\wedge	,	\%	-	>	?
7	0111											:	\#	@	,	=	"
8	1000		a	b	c	d	e	f	g	h	i						
9	1001		j	k	1	m	n	o	p	q	r						
A	1010			s	t	u	v	w	x	y	z						
B	1011																
c	1100		A	B	C	D	E	F	G	H	I						
D	1101		J	K	L	M	N	0	P	Q	R						
E	1110			S	T	U	V	W	X	Y	Z						
F	1111	0	1	2	3	4	5	6	7	8	9						\square

Bit Positions: $\begin{array}{lllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Control Characters:

NUL	- All Zero-Bits
PF	- Punch Off
HT	-Horizontal Tab
LC	- Lower Case
DEL	- Delete
RES	- Restore
NL	- New Line
BS	- Backspace
IL	-Idle

APPENDIX B
 AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE
 (ASCII) (EXTENDED TO 8 BITS)

hex	\rightarrow	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
\downarrow	76x5	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1.	0001	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SS	ESC	FS	GS	RS	US
2	0010																
3	0011																
4	0100	SP	!	"	\#	\$	\%	\&	,	$($)	*	$+$,	-	.	1
5	0101	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
6	0110																
7	0111																
8	1000																
9	1001																
A	1010	,	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
B	1011	P	Q	R	S	T	U	V	W	X	Y	Z	[\sim]	\wedge	-
c	1100																
D	1101																
E	1110	@	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
F	1111	p	q	r	s	t	u	v	w	x	y	z	\{	\checkmark	\}	1	DEL

Bit Positions: $7 \begin{array}{llllllll}7 & \mathrm{X} & 5 & 4 & 3 & 2 & 1\end{array}$
Significance: $\quad \begin{array}{llllllll}2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$

Control Characters:

SOH - Start of Heading (CC)
STX - Start of Text (CC)
ETX - End of Text (CC)
EOT - End of Transmission (CC)
ENQ - Enquiry (CC)
ACK - Acknowledge (CC)
BEL - Bell (audible or attention signal)
BS - Backspace (FE)
HT - Horizontal Tabulation
(punch card skip) (FE)
LF - Line Feed (FE)
VT - Vertical Tabulation (FE)
FF - Form Feed (FE)
CR — Carriage Return (FE)
SO - Shift Out
SI - Shift In
DC1 - Device Control 1

DC2 - Device Control 2
DC3 - Device Control 3
DC4 - Device Control 4 (stop)
NAK - Negative Acknowledge (CC)
SYN - Synchronous Idle (CC)
ETB - End of Transmission Block (CC)
CAN - Cancel
EM - End of Medium
SS - Start of Special Sequence
ESC - Escape
FS - File Separator (IS)
GS - Group Separator (IS)
RS - Record Separator (IS)
US - Unit Separator (IS)
DEL - Delete
SP - Space (normally non-printing)
(CC) - Communication Control
(FE) - Format Effector
(IS) - Information Separator

APPENDIX C
 CHARACTER CODES

Decimal	Hexadecimal	EBCDIC	Character Set Punch Combination	Printer Graphics
0	00	00000000	12,0,9,8,1	
1	01	00000001	12,9,1	
2	02	00000010	12,9,2	
3	03	00000011	12,9,3	
4	04	00000100	12,9,4	
5	05	00000101	12,9,5	
6	06	00000110	12,9,6	
7	07	00000111	12,9,7	
8	08	00001000	12,9,8	
9	09	00001001	12,9,8,1	
10	0 A	00001010	12,9,8,2	
11	0B	00001011	12,9,8,3	
12	0C	00001100	12,9,8,4	
13	0D	00001101	12,9,8,5	
14	0 E	00001110	12,9,8,6	
15	0 F	00001111	12,9,8,7	
16	10	00010000	12,11,9,8,1	
17	11	00010001	11,9,1	
18	12	00010010	11,9,2	
19	13	00010011	11,9,3	
20	14	00010100	11,9,4	
21	15	00010101	11,9,5	
22	16	00010110	11,9,6	
23	17	00010111	11,9,7	
24	18	00011000	11,9,8	
25	19	00011001	11,9,8,1	
26	1A	00011010	11,9,8,2	
27	1B	00011011	11,9,8,3	
28	1 C	00011100	11,9,8,4	
29	1D	00011101	11,9,8,5	
30	1 E	00011110	11,9,8,6	
31	1 F	00011111	11,9,8,7	
32	20	00100000	11,0,9,8,1	
33	21	00100001	0,9,1	
34	22	00100010	0,9,2	
35	23	00100011	0,9,3	
36	24	00100100	0,9,4	
37	25	00100101	0,9,5	
38	26	00100110	0,9,6	
39	27	00100111	0,9,7	
40	28	00101000	0,9,8	
41	29	00101001	0,9,8,1	
42	2A	00101010	0,9,8,2	
43	2B	00101011	0,9,8,3	
44	2C	00101100	0,9,8,4	
45	2D	00101101	0,9,8,5	
46	2 E	00101110	0,9,8,6	
47	2 F	00101111	0,9,8,7	
48	30	00110000	12,11,0,9,8,1	
49	31	00110001	9,1	
50	32	00110010	9,2	
51	33	00110011	9,3	
52	34	00110100	9,4	
53	35	00110101	9,5	
54	36	00110110	9,6	

APPENDIX C CHARACTER CODES (Continued)

Decimal	Hexadecimal	EBCDIC	Character Set Punch Combination	Printer Graphics
55	37	00110111	9,7	
56	38	00111000	9,8	
57	39	00111001	9,8,1	
58	3A	00111010	9,8,2	
59	3B	00111011	9,8,3	
60	3C	00111100	9,8,4	
61	3D	00111101	9,8,5	
62	3 E	00111110	9,8,6	
63	3 F	00111111	9,8,7	
64	40	01000000		Space
65	41	01000001	12,0,9,1	
66	42	01000010	12,0,9,2	
67	43	01000011	12,0,9,3	
68	44	01000100	12,0,9,4	
69	45	01000101	12,0,9,5	
70	46	01000110	12,0,9,6	
71	47	01000111	12,0,9,7	
72	48	01001000	12,0,9,8	
73	49	01001001	12,8,1	
74	4A	01001010	12,8,2	ϕ (cents)
75	4B	01001011	12,8,3	- (period)
76	4 C	01001100	12,8,4	$<$ (Less than)
77	4D	01001101	12,8,5	((open parenthesis)
78	4 E	01001110	12,8,6	+ (plus)
79	4 F	01001111	12,8,7	\| (vertical)
80	50	01010000	12	\& (ampersand)
81	51	01010001	12,11,9,1	
82	52	01010010	12,11,9,2	
83	53	01010011	12,11,9,3	
84	54	01010100	12,11,9,4	
85	55	01010101	12,11,9,5	
86	56	01010110	12,11,9,6	
87	57	01010111	12,11,9,7	
88	58	01011000	12,11,9,8	
89	59	01011001	11,8,1	
90	5A	01011010	11,8,2	! (exclamation)
91	5B	01011011	11,8,3	\$ (dollar sign)
92	5 C	01011100	11,8,4	* (asterisk)
93	5D	01011101	11,8,5) (close parenthesis)
94	5E	01011110	11,8,6	; (semicolon)
95	5 F	01011111	11,8,7	\checkmark (logical NOT)
96	60	01100000	11	- (minus)
97	61	01100001	0,1	/ (slash)
98	62	01100010	11,0,9,2	
99	63	01100011	11,0,9,3	
100	64	01100100	11,0,9,4	
101	65	01100101	11,0,9,5	
102	66	01100110	11,0,9,6	
103	67	01100111	11,0,9,7	
104	68	01101000	11,0,9,8	
105	69	01101001	0,8,1	
106	6 A	01101010	12,11	\wedge (logical AND)
107	6B	01101011	0,8,3	, (comma)
108	6 C	01101100	0,8,4	\% (percent)
109	6D	01101101	0,8,5	_. (underline)

APPENDIX C
 CHARACTER CODES (Continued)

\(\left.\begin{array}{|l|l|l|l|l|}\hline \& \& \& Character Set

Punch

Combination\end{array}\right]\)| Printer |
| :---: |
| Graphics |
| 110 |

APPENDIX C
CHARACTER CODES (Continued)

Decimal	Hexadecimal	EBCDIC	Character Set Punch Combination	Printer Graphics
165	A5	10100101	11,0,5	
166	A6	10100110	11,0,6	
167	A7	10100111	11,0,7	
168	A8	10101000	11,0,8	
169	A9	10101001	11,0,9	
170	AA	10101010	11,0,8,2	
171	AB	10101011	11,0,8,3	
172	AC	10101100	11,0,8,4	
173	AD	10101101	11,0,8,5	
174	AE	10101110	11,0,8,6	
175	AF	10101111	11,0,8,7	
176	B0	10110000	12,11,0,8,1	
177	B1	10110001	12,11,0,1	
178	B2	10110010	12,11,0,2	
179	B3	10110011	12,11,0,3	
180	B4	10110100	12,11,0,4	
181	B5	10110101	12,11,0,5	
182	B6	10110110	12,11,0,6	
183	B7	10110111	12,11,0,7	
184	B8	10111000	12,11,0,8	
185	B9	10111001	12,11,0,9	
186	BA	10111010	12,11,0,8,2	
187	BB	10111011	12,11,0,8,3	
188	BC	10111100	12,11,0,8,4	
189	BD	10111101	12,11,0,8,5	
190	BE	10111110	12,11,0,8,6	
191	BF	10111111	12,11,0,8,7	
192	C0	11000000	12,0	
193	C1	11000001	12,1	A
194	C2	11000010	12,2	B
195	C3	11000011	12,3	C
196	C4	11000100	12,4	D
197	C5	11000101	12,5	E
198	C6	11000110	12,6	F
199	C7	11000111	12,7	G
200	C8	11001000	12,8	H
201	C9	11001001	12,9	I
202	CA	11001010	12,0,9,8,2	
203	CB	11001011	12,0,9,8,3	
204	CC	11001100	12,0,9,8,4	
205	CD	11001101	12,0,9,8,5	
206	CE	11001110	12,0,9,8,6	
207	CF	11001111	12,0,9,8,7	
208	D0	11010000	11,0	
209	D1	11010001	11,1	J
210	D2	11010010	11,2	K
211	D3	11010011	11,3	L
212	D4	11010100	11,4	M
213	D5	11010101	11,5	N
214	D6	11010110	11,6	0
215	D7	11010111	11,7	P
216	D8	11011000	11,8	Q
217	D9	11011001	11,9	R
218	DA	11011010	12,11,9,8,2	
219	DB	11011011	12,11,9,8,3	

APPENDIX C
 CHARACTER CODES (Continued)

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Decimal } & \text { Hexadecimal } & \text { EBCDIC } & \begin{array}{c}\text { Character Set } \\
\text { Punch } \\
\text { Combination }\end{array}
$$ \&

\hline 220 \& DC \& 11011100 \& 12,11,9,8,4 \&

Printer

Graphics\end{array}\right]\)| |
| :--- |
| 221 |

APPENDIX D

powers of two table

```
            2n}\quadn\quad\mp@subsup{2}{}{-n
            1 0 1.0
            2 1 0.5
            4 0.25
            16 4 0.062 5
            32 5 0.031 25
            64 6 0.015 625
            128 7 0.007 812 5
            256 8 0.003 906 25
            512 9 0.001 953 125
            1 024 10 0.000 976 562 5
            2048 11 0.000488 281 25
            4096 12 0.000 244 140 625
            8 192 13 0.000 122 070 312 5
            16 384 14 0.000 061 035 156 25
            32 768 15 0.000 030 517 578 125
            65 536 16 0.000 015 258 789 062 5
            131 072 17 0.000 007 629 394 531 25
            262144 18 0.000 003 814 697 265 625
            524 288 19 0.000 001 907 348 632 812 5
            1 048 576 20 0.000 000 953 674 316 406 25
            2 097 152 21 0.000 000 476 837 158 203 125
            4194 304 22 0.000 000 238 418 579 101 562 5
            8 388 608 23 0.000 000 119 209 289 550 781 25
                                    16 777 216 24 0.000 000 059 604 644 775 390 625
                                    33 554 432 25 0.000 000 029 802 322 387 695 312 5
                                    67 108 864 26 0.000 000 014 901 161 193 847 656 25
                                    134 217 728 27 0.000 000 007 450 580 596 923 828 125
                                    268435 456 28 0.000 000 003 725 290 298 461 914 062 5
                                    536 870 912 29 0.000 000 001 862 645 149 230 957 031 45
                                    1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
                                    2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5
                                    4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
                                    8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125
                                    17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
                                    34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
    68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
    137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
    274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
    549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125
1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
```


APPENDIX E

I/O OPERATION INFORMATION
 I/O INSTRUCTION FORMAT (SI)

OP		1		B_{1}		D_{1}
9C	SDV	0	0			
9 E	HDV	0	0	(B_{1})	$+\mathrm{D}_{1}=$	Channel
9D	TDV	0	0			and
9 F	CKC	0	0			Device

CHANNEL	
000	$=$ MUX
001	$=$ SEL1
002	$=$ SEL 2
003	$=$ SEL3

IR AFTER STAT.

$\mathbf{x x x}$	LOCATION ADDRESSED
010	$\mathrm{CCR1}_{01}$
011	$\mathrm{CCR1}_{23}$
100	$\mathrm{CCR2}_{01}$
101	$\mathrm{CCR2}_{23}$
110	CAR_{01}
111	CAR_{23}

COMMAND CODE	OPERATION
MMMM0001	SENSE
MMMB0010	READ REVERSE
MMMB0011	WRITE
MMMB0100	WRITE ERASE
MMMB0101	READ
MMMM0111	WRITE CONTROL
MMMM1001	TRANSFER IN CHANNEL

M (Modifier) - Indicates variations of the operation. Definition is provided in the Applicable I/O Device Manuals.

B — Burst Mode Bit.

CC	Start device	HALT DEVICE	TEST DEVICE	CHECK CHANNEL
0	Operation Initiated	Operation not Terminated, Channel or Sub-Channel not Busy	Device Available	Channel Available
1	Operation not Initiated, Check CSB and SDB	Operation not Terminated, Check CSB and SDB	Device not Avail- able, Check CSB and SDB	Term. Interrupt Pend- ing in Selector Channel
2	Operation not Initiated, Channel or Sub-Channel Busy or Term Interrupt Pending	Operation was Terminated	Device not Avail- able, Channel or Sub-Channel Busy	Selector Busy or MUX in Burst Mode Busy
3	Channel or Sub-Channel Inoperable	Not Terminated, Channel or Sub- Channel Inoperable	Device not Avail- able, Channel or Sub-Channel Inoper- able	Channel Inoperable

APPENDIX F
 TYPEWRITER GRAPHICS AND CODES

Symbol	EBCDIC	Symbol	EBCDIC	Symbol	EBCDIC
A	11000001	X	11100111	1	01001111
B	11000010	Y	11101000	\&	01010000
C	11000011	Z	11101001	!	01011010
D	11000100	\varnothing	11110000	\$	01011011
E	11000101	1	11110001	*	01011100
F	11000110	2	11110010)	01011101
G	11000111	3	11110011	;	01011110
H	11001000	4	11110100	\square	01011111
I	11001001	5	11110101		
J	11010001	6	11110110	-	01100000
K	11010010	7	11110111	1	01100001
				\wedge	01101010
L	11010011	8	11111000		01101011
M	11010100	9	11111001	,	01101011
N	11010101	EOT		\%	01101100
0	11010110	ERROR	-	-	01101101
P	11010111	TOSL	XXXX 0101	>	01101110
Q	11011000	CR LF	00010101	?	01101111
R	11011001	SPACE	01000000	:	01111010
S	11100010	¢	01001010	\#	01111011
T	11100011		01001011	@	01111100
U	11100100	<	01001100	,	01111101
V	11100101	(01001101	$=$	01111110
W	11100110	+	01001110	"	01111111
CR LF - Carriage Return Line Feed					

RADIO CORPORATION OF AMERICA ELECTRONIC DATA PROCESSING CAMDEN, NEW JERSEY 08101

[^0]: The effective address of B_{2}, D_{2} is

[^1]: GR = General Register
 IMR = Interrupt Mask Register
 ISR $=$ Interrupt Status Register

